+0  
 
0
81
2
avatar

Let \( f(x) = \begin{cases} -x^2 & \text{if } x \geq 0,\\ x+8& \text{if } x <0. \end{cases} \)

 

Compute \(f(f(f(f(f(1))))).\)

Guest Jun 21, 2018
 #1
avatar+9 
+1

f(1)=-1

 

\(y=-x^2\), and \(y=1\)

\(1=-x^2\), solve for x, \(x=-1\), check it fits piecewise, and it does.

therefore \(f(1)=-1\)

 

You can also graph the equations \(y=-x^2\) with \(x \geq0\)  and \(y=x+8\) with \(x<0\), go to where \(y=1\) and see what \(x\) is.

apostos1  Jun 21, 2018
edited by apostos1  Jun 21, 2018
 #2
avatar+88871 
+2

f(1)  =   - (1)^2  =  -1

f (f(1) )  =  f (-1)  = -1 + 8  =  7

f (f (f (1) ) )  =  f ( 7)  = - (7)^2  = -49

 f ( f ( f( f(1) ) ) )   =  f (-49)  = -49 + 8  = -41

f ( f ( f ( f ( f ( 1) ) ) ) )  =  f (-41)  =  - (-41)^2  = -1681

 

 

 

cool cool cool

CPhill  Jun 23, 2018

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.