We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
193
2
avatar

Let \( f(x) = \begin{cases} -x^2 & \text{if } x \geq 0,\\ x+8& \text{if } x <0. \end{cases} \)

 

Compute \(f(f(f(f(f(1))))).\)

 Jun 21, 2018
 #1
avatar+9 
+1

f(1)=-1

 

\(y=-x^2\), and \(y=1\)

\(1=-x^2\), solve for x, \(x=-1\), check it fits piecewise, and it does.

therefore \(f(1)=-1\)

 

You can also graph the equations \(y=-x^2\) with \(x \geq0\)  and \(y=x+8\) with \(x<0\), go to where \(y=1\) and see what \(x\) is.

 Jun 21, 2018
edited by apostos1  Jun 21, 2018
 #2
avatar+101345 
+2

f(1)  =   - (1)^2  =  -1

f (f(1) )  =  f (-1)  = -1 + 8  =  7

f (f (f (1) ) )  =  f ( 7)  = - (7)^2  = -49

 f ( f ( f( f(1) ) ) )   =  f (-49)  = -49 + 8  = -41

f ( f ( f ( f ( f ( 1) ) ) ) )  =  f (-41)  =  - (-41)^2  = -1681

 

 

 

cool cool cool

 Jun 23, 2018

15 Online Users

avatar
avatar
avatar