+0  
 
+2
3
129
2
avatar+2 

                Piyush Theorem :A Theorem on Right Angled Triangles

 

Piyush Theorem: In a Right-Angled Triangle with sides in A.P. Series, the distance between the point of intersection of median & altitude at the base is 1/10th the sum of other two sides.

This Theorem applies in Two Conditions:

The Triangle must be Right-Angled.

Its Sides are in A.P. Series.

We Have:

∆ABC is Right-Angled

AD is Altitude

AE is Median i.e. E is the midpoint of BC

Proof:

(a+d)2 = a2 + (a-d)2

(a+d)2 -(a-d)2 = a2

a2 + d2 + 2ad – a2 – d2 + 2ad = a2

4ad = a2

a(a-4d) = 0

a – 4d = 0 (as a ≠ 0)

a = 4d (———-eqn. 1)

In ∆ABD

AB2 = BD2 + AD2

(a – d)2 = BD2 + AD2

(a – d)2 = {(a + d)/2 – DE}2 + AD2 (———-eqn. 2)

In ∆ACD

AC2 = DC2 + AD2

a2 = DC2 + AD2

a2 = {(a + d)/2 + DE}2 + AD2 (———-eqn. 3)

From eqn. 2 & 3, we get

(a – d)2 – a2 = {(a + d)/2 – DE}2 + AD2 – {(a + d)/2 + DE}2 – AD2

(a – d +a )(a – d – a) = {(a+d)/2 – DE + (a+d)/2 + DE}{(a+d)/2 – DE – (a+d)/2 – DE}

(2a – d)(-d) = (a + d)(-2DE)

(2a – d)(d) = (a + d)(2DE)

So, 2DE = (2a – d)d/(a+d)

From eqn. 1, we get

2DE = (2*4d – d)d/(4d + d)

2DE = 7d2/5d

DE = 7d/10 = (4d + 3d)/10

But, AD = a –d = 4d – d = 3d & AC = a = 4d

Putting these values, we get

DE = (AC + AB)/10 (Hence Proved)

Copyrighted©PiyushGoel

 

https://pen2print.org/index.php/ijr/article/view/3743/3589

off-topic
himeshbhai  Sep 15, 2018
 #1
avatar+27220 
+1

I think people would be more likely to read this through if you supplied a picture with it (just providing a link isn't so effective). 

Alan  Sep 18, 2018
 #2
avatar+2 
0

ok will attach the figure 

himeshbhai  Sep 19, 2018

10 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.