A number $x$ equals $2^{15}\cdot3^6$. What number's cube equals $x$?
\(\sqrt[3]{2^(15)* 3^6}\) = 215/3 * 36/3 = 25 * 32
\(2^{15}\times3^6\rightarrow (2^5)^3 \times(3^2)^3\rightarrow (2^5\times 3^2)^3\)
so \(x^{1/3}=2^5\times3^2\)
which I'll leave you to simplify.