We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
39
2
avatar+67 

Let \(F_1\) and \(F_2\) be the foci of the ellipse \(kx^2 + y^2 = 1,\) where \(k > 1\) is a constant. Suppose that there is a circle which passes through \(F_1\) and \(F_2\) and which lies tangent to the ellipse at two points on the \(x\)-axis. Compute \(k\).

 May 7, 2019
 #1
avatar+100519 
+1

The focal points will lie on the y axis.....and the circle will be centered at the origin

 

kx^2 + y^2  = 1    we can write

 

   x^2                 y^2

  _____   +       _____  =    1

 (1/√k)^2              1

 

The  focal distance will be  =  √[ 1 - (1/√k)^2]  =  √[ 1 - 1/k ]

The radius of the circle will be the square of this

 

So  ... since the circle is tangent to the ellipse at two points on the x axis.....the point  (  √ (1 - 1/k) , 0 )  will be on the ellipse...so 

 

[√ (1 - 1/k)]^2                0

__________  +         ___    =     1         simplifying, we have

    (1/ √k)^2                  1

 

1 - 1/k  =  1/k

1 = 2/k

k = 2

 

Here's a graph :  https://www.desmos.com/calculator/nlcn74kcb7

 

 

 

cool cool cool

 May 7, 2019
 #2
avatar+67 
0

thank you that really helps

FlyEaglesFly  May 7, 2019

9 Online Users

avatar