+0  
 
0
132
1
avatar

There exist real numbers  such that 

\begin{align*}
e^{\pi i/2} &= a +bi, \\
e^{-2\pi i/3} &= c+di, \\
e^{9\pi i/4} &= f + gi.
\end{align*}
Enter  a,b,c,d,f,g in that order.

 Mar 21, 2022
 #1
avatar+33151 
+2

You can write  \(e^{i\theta}=\cos \theta+i\sin \theta\), so the real part of each number (a, c and f) is obtained using \(\cos \theta\) and the imaginary part (b, d and g) using \(\sin \theta\).

 Mar 22, 2022
edited by Alan  Mar 22, 2022

6 Online Users