There exist real numbers such that
\begin{align*} e^{\pi i/2} &= a +bi, \\ e^{-2\pi i/3} &= c+di, \\ e^{9\pi i/4} &= f + gi. \end{align*} Enter a,b,c,d,f,g in that order.
You can write \(e^{i\theta}=\cos \theta+i\sin \theta\), so the real part of each number (a, c and f) is obtained using \(\cos \theta\) and the imaginary part (b, d and g) using \(\sin \theta\).