+0  
 
+1
155
1
avatar+190 

Given: Quadrilateral ABCD is inscribed in circle O.

Prove: m∠A + m∠C = 180º

https://static.k12.com/nextgen_media/assets/8093697-NG_GMT_SemB_10_UT_08.png

 

**All bolded text are my answers, unbolded is was given**

 

Answer Choices Given: 

 

Inscribed Angle Theorem

The sum of arcs that make a circle is 360º

Central Angle Theorem

m∠A + m∠B = 180º

m∠A + m∠C = 180º

m(arc)DAB = 2(m∠C)

 

Statements Reasons
Quadrilateral ABCD is incribed in circle O. Given
m(arc)BCD = 2(m∠A) Central Angle Theorem
m(arc)DAB = 2(m∠​C) Inscribed Angle Theorem
m(arc)BCD + m(arc)DAB = 360º The sum of arcs that make a circle is 360º
2(m∠A) + 2(m∠C) = 360º Substitution Property
m∠A + m∠C = 180º

Division Preperty of Equality

 

 

 

 

 

 

 

 

 

 

 

 

Thank You So Much!!!

KennedyPape  Mar 7, 2018
Sort: 

1+0 Answers

 #1
avatar+86528 
+2

Inscribed Angle Theorem

 

Correct

 

Correct  !!!!!

 

 

cool cool cool

CPhill  Mar 7, 2018

14 Online Users

avatar
avatar
avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy