We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
202
1
avatar+211 

Find the largest real number x for which there exists a real number y such that x^2 + y^2 = 2x + 2y.

 Dec 1, 2018

Best Answer 

 #1
avatar+987 
+2

Circle's general form is \(ax^2 + by^2 + cx + dy + e = 0.\)

 

We want to rewrite \(x^2 + y^2 = 2x + 2y\) to its standard form. 

 

\(x^2 + y^2 = 2x + 2y\\ x^2-2x+y^2-2y=0\\ x^2-2x+1+y^2-2y+1=2\\ (x-1)^2+(y-1)^2=2\)

 

The circle has a center of \((1,1)\) and a radius of \(\sqrt2. \)

Largest value on the circle graph is farthest right, \(\boxed{1+\sqrt2}\)

 

If there is any part you don't understand, please message me

 Dec 1, 2018
 #1
avatar+987 
+2
Best Answer

Circle's general form is \(ax^2 + by^2 + cx + dy + e = 0.\)

 

We want to rewrite \(x^2 + y^2 = 2x + 2y\) to its standard form. 

 

\(x^2 + y^2 = 2x + 2y\\ x^2-2x+y^2-2y=0\\ x^2-2x+1+y^2-2y+1=2\\ (x-1)^2+(y-1)^2=2\)

 

The circle has a center of \((1,1)\) and a radius of \(\sqrt2. \)

Largest value on the circle graph is farthest right, \(\boxed{1+\sqrt2}\)

 

If there is any part you don't understand, please message me

GYanggg Dec 1, 2018

13 Online Users

avatar