What is the sum of all values of \(y\) for which the expression \(\frac{y+6}{y^2-5y+4}\) is undefined?

dp1806 Aug 25, 2020

#1**-1 **

sorry for the inconvenience. I found out the answer, and it's below

Let $y = f(x)$. Then, $f(f(x)) = f(y) = 5$, so either $x^2 - 4 = 5$ or $x + 3 = 5$. Solving the first equations yields that $y = f(x) = \pm 3$, both of which are greater than or equal to $-4$. The second equation yields that $y = 2$, but we discard this solution because $y \ge -4$. Hence $f(x) = \pm 3$, so $x^2 - 4 = \pm 3$ or $x + 3 = \pm 3$. The first equation yields that $x = \pm 1, \pm \sqrt{7}$, all of which are greater than or equal to $-4$. The second equation yields that $x = -6, 0$, of which only the first value, $x = -6$, is less than $-4$. Hence, there are $\boxed{5}$ values of $x$ that satisfy $f(f(x)) = 5$: $x = -6, -\sqrt{7}, -1, 1, \sqrt{7}$, as we can check.

dp1806 Aug 25, 2020