We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
132
6
avatar+86 

The sum of a geometric series whose first three terms are 8000, -12000, and 18000 is 57875. What is the last term of the series?

 

A geometric series \(b_1+b_2+b_3+\cdots+b_{10}\) has a sum of 180. Assuming that the common ratio of that series is \(\dfrac{7}{4}\), find the sum of the series \(b_2+b_4+b_6+b_8+b_{10}.\)

 Feb 6, 2019
edited by somebody  Feb 6, 2019
 #1
avatar+79 
+1

2) b + bx +bx^2 +bx^3 .... +bx^9 = 180, where x =7/4

 

Therefore, b= 47185920/93808891

 

Therefore, b_2+b_4+b_6+b_8+b_10 = 1260/11.

 

1) By the geometric series (finite) formula,

 

 \(\frac{8000(1-(-1.5)^n)}{2.5}=57875 \\ \text{where n is the number of terms}\)

 

n=7, so 8000 times -1.5^7 = -136687.5.

 Feb 6, 2019
 #2
avatar+22188 
+8

The sum of a geometric series whose first three terms are 8000, -12000, and 18000 is 57875.

What is the last term of the series?

 

Geometric series:

\(\begin{array}{lrcll} \text{first term} & a_1 &=& a \\ \text{second term} & a_2 &=& ar \\ \text{third term} & a_3 &=& ar^2 \\ \ldots \\ \text{last term} & a_n &=& ar^{n-1} \\\\ \text{so}& a_1 &=& 8000 \\ & a_2 &=& -12000 \\ & a_3 &=& 18000 \\\\ \text{a=?} & a &=& a_1 \\ & \mathbf{a} & \mathbf{=}& \mathbf{8000} \\\\ \text{r=?} & r &=& \dfrac{a_2}{a_1} = \dfrac{a_3}{a_2} \\ & r &=& \dfrac{-12000}{8000} \\ & \mathbf{r} & \mathbf{=}& \mathbf{-\dfrac{3}{2}} \\ \end{array} \)

 

The sum of a geometric series \(s_n\):

\(\begin{array}{|rcll|} \hline s_n &=& a\left(\dfrac{1-r^{n}}{1-r}\right) \\\\ s_n &=& \dfrac{a-ar^{n}}{1-r} \\\\ s_n &=& \dfrac{a-ar^{n-1}r}{1-r} \quad | \quad a_n = ar^{n-1} \\\\ \mathbf{s_n} & \mathbf{=}& \mathbf{\dfrac{a-a_nr}{1-r} } \\ \hline \end{array}\)

 

The last term \(a_n\):

\(\begin{array}{|rcll|} \hline s_n &=& \dfrac{a-a_nr}{1-r} \\ s_n(1-r) &=& a-a_nr \\ a_nr &=& a-s_n(1-r) \\ a_n &=& \dfrac{ a-s_n(1-r) } {r} \quad & | \quad a=8000,\ s_n =57875, \ r =-\dfrac{3}{2} \\ a_n &=& \dfrac{ 8000-57875\left(1-\left(-\dfrac{3}{2}\right)\right) } {-\dfrac{3}{2}} \\ a_n &=& -\dfrac{2}{3}\cdot \left( 8000-57875\cdot \dfrac{5}{2} \right) \\ a_n &=& \dfrac{1}{3}\cdot \left( 5\cdot 57875-16000 \right) \\ a_n &=& \dfrac{273375}{3} \\ \mathbf{a_n} & \mathbf{=}& \mathbf{91125} \\ \hline \end{array}\)

 

The last term of the series is 91125

 

laugh

 Feb 6, 2019
 #4
avatar+100570 
+1

Nice, heureka!!!

 

 

cool cool cool

CPhill  Feb 6, 2019
 #5
avatar
+1

Did you miss this solution by Max Wong?  https://web2.0calc.com/questions/help_21404#r4

Guest Feb 6, 2019
 #6
avatar+22188 
+7

Thank you, CPhill.

 

laugh

heureka  Feb 7, 2019
 #3
avatar+22188 
+9

A geometric series

\(b_1+b_2+b_3+\cdots+b_{10} \) has a sum of 180.
Assuming that the common ratio of that series is
\(\dfrac{7}{4}\),
find the sum of the seres
\(b_2+b_4+b_6+b_8+b_{10}\).

 

Geometric series:

\(\begin{array}{|rcll|} \hline b_1 &=& a \\ b_2 &=& ar \\ b_3 &=& ar^2 \\ b_4 &=& ar^3 \\ b_5 &=& ar^4 \\ b_6 &=& ar^5 \\ b_7 &=& ar^6 \\ b_8 &=& ar^7 \\ b_9 &=& ar^8 \\ b_{10} &=& ar^9 \\ \mathbf{r} &=& \mathbf{ \dfrac{7}{4}} \\\\ s_{10} & = & b_1+b_2+b_3+b_4+b_5+b_6+b_7+b_8+b_9+b_{10} \\ \mathbf{s_{10}} &\mathbf{=}& \mathbf{180} \\ \hline \end{array}\)

 

The sum of a geometric series \(s_{10}\):

\(\begin{array}{|rcll|} \hline s_{10} &=& a\left(\dfrac{1-r^{10}}{1-r}\right) \\ &\text{or} \\ \mathbf{a} & \mathbf{=}& \mathbf{ \dfrac{s_{10}(1-r) }{1-r^{10}} } \\ \hline \end{array} \)

 

\(\text{Let $\mathbf{x}=b_2+b_4+b_6+b_8+b_{10}$}\)

 

\(\begin{array}{|rcll|} \hline s_{10} &=& b_1+b_2+b_3+b_4+b_5+b_6+b_7+b_8+b_9+b_{10} \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+b_3+b_5+b_7+b_9 \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\left(\dfrac{b_3}{r}+\dfrac{b_5}{r}+\dfrac{b_7}{r}+\dfrac{b_9}{r}\right) \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\cdot (b_2+b_4+b_6+b_8) \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\cdot (b_2+b_4+b_6+b_8)+rb_{10}-rb_{10} \\\\ s_{10} &=& b_1+(b_2+b_4+b_6+b_8+b_{10})+r\cdot (b_2+b_4+b_6+b_8+b_{10})-rb_{10} \\\\ s_{10} &=& b_1+x+r\cdot x-rb_{10} \\\\ s_{10} &=& x(1+r) + b_1-rb_{10} \quad | \quad b_1 = a,\ b_{10}= ar^9 \\\\ s_{10} &=& x(1+r) + a-rar^9 \\\\ s_{10} &=& x(1+r) + a-ar^{10} \\\\ s_{10}&=& x(1+r) + a(1-r^{10}) \quad | \quad \mathbf{a = \dfrac{s_{10}(1-r) }{(1-r^{10})} } \\\\ s_{10}&=& x(1+r) + \dfrac{s_{10}(1-r) }{(1-r^{10})}(1-r^{10}) \\\\ \mathbf{s_{10}} &\mathbf{=}& \mathbf{x(1+r) + s_{10}(1-r) } \\ \hline \end{array} \)

 

\(\mathbf{x=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{s_{10}} &\mathbf{=}& \mathbf{x(1+r) + s_{10}(1-r) } \\\\ x(1+r) &=& s_{10} - s_{10}(1-r) \\ x(1+r) &=& s_{10}\Big(1 - (1-r) \Big) \\ x(1+r) &=& s_{10} (1 - 1+r ) \\ x(1+r) &=& s_{10}r \\ \mathbf{x} &\mathbf{=}& \mathbf{s_{10}\left(\dfrac{r}{1+r}\right)} \quad | \quad s_{10}=180,\ r=\dfrac{7}{4} \\ x & = & 180\cdot \left(\dfrac{\dfrac{7}{4}}{1+\dfrac{7}{4}}\right) \\\\ x & = & 180\cdot \left(\dfrac{\dfrac{7}{4}}{ \dfrac{11}{4}}\right) \\\\ x & = & 180\cdot \left( \dfrac{7}{11} \right) \\\\ \mathbf{x} &\mathbf{=}& \mathbf{\dfrac{1260}{11}} \\ \hline \end{array}\)

 

The sum of the series \(\mathbf{b_2+b_4+b_6+b_8+b_{10}}\) is \(\mathbf{\dfrac{1260}{11}}\)

 

laugh

 Feb 6, 2019

3 Online Users