Processing math: 100%
 
+0  
 
0
739
5
avatar

Find a polynomial f(x) of degree 5 such that both of these properties hold:

 f(x) is divisible by $x^3$.

$f(x)+2$  is divisible by $(x+1)^3$.

 

Please help ASAP if you have a solution. Thank you!

 May 29, 2020
 #1
avatar+738 
+1

ok so for the first part of your question  f(x) is divisible by $x^3$, the answer is

*THIS IS ALL HEUREKA'S WORK ABOVE*

 May 29, 2020
 #3
avatar+26396 
+3

Thank you, lokiisnotdead !

 

laugh

heureka  May 29, 2020
 #4
avatar+738 
+1

yep no problem! 

ps you're so smart! these problems are really hard to figure out, and yet you do them so professionally! :)

lokiisnotdead  May 29, 2020
 #2
avatar+26396 
+5

Find a polynomial f(x) of degree 5 such that both of these properties hold:

f(x) is divisible by x3.
f(x)+2  is divisible by (x+1)3.

 

1.  f(x) is divisible by x3  ?

Let f(x)=a(xx1)(xx2)(xx3)(xx4)(xx5) is a polynomial of degree 5.If f(x) is divisible by x3, than x1=x2=x3=0f(x)=a(x0)(x0)(x0)(xx4)(xx5)f(x)=ax3(xx4)(xx5) This polynom is divisible by x3expand to:f(x)=ax5a(x4+x5)x4+ax4x5x3Let A=a B=a(x4+x5), and  C=ax4x5 finally we have:f(x)=Ax5+Bx4+Cx3(1) This polynom is divisible by x3

 

2.  f(x)+2 is divisible by (x+1)3  ?

Say P(x) is a polynom divisible by (x+1)3 .Set:P(x)=b(x+1)3The root is x=1 soP(1)=b(1+1)3=0Set also: P(x)=3b(x+1)2soP(1)=3b(1+1)2=0Set finally: P(x)=6b(x+1)soP(1)=6b(1+1)2=0ConclusionIf P(x) is divisible by (x+1)3, so P(1)=P(1)=P(1)=0(2) at the root x=1 

 

We set:1)f(x)+2=P(x)|f(x)+2 and P(x) are divisible by (x+1)3 f(1)+2=P(1)=0|(2)2)(f(x)+2)=P(x)f(x)=P(x)f(1)=P(1)=0|(2)3)(f(x)+2)=P(x)f(x)=P(x)f(1)=P(1)=0|(2)

 

We see:f(1)+2=0(3)f(1)=0(4)f(1)=0(5)

 

We calculate:f(x)=Ax5+Bx4+Cx3f(x)+2=Ax5+Bx4+Cx3+2f(1)+2=A+BC+2=0|(3)f(x)=5Ax4+4Bx3+3Cx2f(1)=5A4B+3C=0|(4)f(x)=20Ax3+12Bx2+6Cxf(1)=20A+12B6C=0|(5)

 

Solve the Simultaneous Equations, we calculate A B C  :A+BC+2=0A+BC=25A4B+3C=020A+12B6C=0

 

Cramer's Rule:

1A+1B1C=25A4B+3C=020A+12B6C=0Determinant denominator=|11154320126|=(1)(4)(6)+512(1)+(20)13(20)(4)(1)(1)12351(6)=246060+80+36+30=2

 

A=|2110430126|2=(2)(4)(6)(2)1232=242A=12B=|1215032006|2=(20)(2)35(2)(6)2=602B=30C=|11254020120|2=512(2)(20)(4)(2)2=402C=20

 

The Polynom f(x)=Ax5+Bx4+Cx3 with A=12 B=30, and  C=20f(x)=12x5+30x4+20x3

 

Proof:

f(3)=1235+3034+2033=2916+2430+540=5886f(3)33=588633=218 f(3)+2(3+1)3=5886+243=588864=92 

 

laugh

 May 29, 2020
 #5
avatar+118703 
+1

Thanks Loki and Heureka,

 

I went with a more straight forward (but not shorter) approach, 

I just divided by (x+1) three times to find the coefficients.

 

f(x)=ax5+bx4+cx3f(x)+2=ax5+bx4+cx3+2[f(x)+2]÷(x+1)=[ax5+bx4+cx3+2]÷(x+1)I did this by algebraic division and got a remainer of c+ba+2The remainder must be 0 soc+ba+2=0c=ba+2

 

So now I have

 

f(x)+2=ax5+bx4+(ba+2)x3+2[f(x)+2]÷(x+1)=[ax5+bx4+(ba+2)x3+2]÷(x+1)=ax4+(ba)x3+2x22x+2 (ax4+(ba)x3+2x22x+2)÷(x+1)I did this by algebraic division and got a remainder of 6b+2aThe remainder must be 0 so6b+2a=0b=6+2a (ax4+(ba)x3+2x22x+2)÷(x+1)=(ax4+(6+a)x3+2x22x+2)÷(x+1)=ax3+6x24x+2

 

(ax3+6x24x+2)÷(x+1)I did this by algebraic division and got a remainder of 12aThe remainder must be 0 soa=12 soa=12b=6+2a=30c=ba+2=3012+2=20sof(x)=12x5+30x4+20x3

 

----------------------------------------------------------------------------------------------------

LaTex:

f(x)=ax^5+bx^4+cx^3\\
f(x)+2=ax^5+bx^4+cx^3+2\\
[f(x)+2]\div(x+1)=[ax^5+bx^4+cx^3+2]\div(x+1)\\
\text{I did this by algebraic division and got a remainer of }-c+b-a+2\\
\text{The remainder must be 0 so}\\
-c+b-a+2=0\\
c=b-a+2

 

f(x)+2=ax^5+bx^4+(b-a+2)x^3+2\\
[f(x)+2]\div(x+1)\\\qquad=[ax^5+bx^4+(b-a+2)x^3+2]\div(x+1)\\
\qquad =ax^4+(b-a)x^3+2x^2-2x+2\\~\\
(ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\
\\\text{I did this by algebraic division and got a remainder of }6-b+2a\\
\text{The remainder must be 0 so}\\
6-b+2a=0\\
b=6+2a\\~\\
(ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\
=(ax^4+(6+a)x^3+2x^2-2x+2)\div(x+1)\\
=ax^3+6x^2-4x+2

 

(ax^3+6x^2-4x+2)\div(x+1)\\
\\\text{I did this by algebraic division and got a remainder of }12-a\\
\text{The remainder must be 0 so}\\
a=12\\~\\
so\\
a=12\\
b=6+2a=30\\
c=b-a+2=30-12+2=20\\
so\\
f(x)=12x^5+30x^4+20x^3

 Aug 27, 2020

0 Online Users