Let
x1 = [( 2m + √ [ 4m^2 - 4(1)(m^2 + 2m + 3 ) ] ) / 2 ]
x2 = [( 2m - √ [ 4m^2 - 4(1)(m^2 + 2m + 3 ) ] ) / 2 ]
(x1)^2 + (x2)^2 =
2 * [4m^2 + 4m^2 - 4m^2 - 8m - 12 ] / 4 =
[4m^2 - 8m - 12 ] / 2 =
2m^2 - 4m - 6
The m value that minimizes this is 4 / (2 * 2) = 4 / 4 = 1
So...the minimum value of (x1)^2 + (x2)^2 = 2(1)^2 - 4(1) - 6 = -8