We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
57
2
avatar

Let z be a complex number such that z^5 = 1 and \(z \neq 1\). Compute \(z + \frac{1}{z} + z^2 + \frac{1}{z^2}.\)

Let z be a complex number such that |z - 5 - i| = 5. Find the minimum value of \(|z - 1 + 2i|^2 + |z - 9 - 4i|^2.\)

 Apr 19, 2019
 #1
avatar+7499 
+2

\(z^5 = 1 \implies z = e^{\frac{2k\pi i}{5}}, k = 1,2,3,4\\ \dfrac{1}{z} = z^4\\ \dfrac{1}{z^2} = z^3\\ \text{Substitute }z = e^{\frac{2\pi i}5}\\ z+\dfrac1{z}+z^2+\dfrac1{z^2} = z+z^2+z^3+z^4 = \displaystyle \sum_{k=1}^4 e^{\frac{2k\pi i}{5}}\)

So the question is actually asking the sum of roots of the equation \(z^5-1 = 0\), excluding 1.

Sum of roots of \(ax^5+bx^4+cx^3+dx^2+ex+f=0\) is \(\dfrac{-b}{a}\). But don't forget to exclude 1.

The required value = \(-\dfrac{0}{1} - 1\) = -1.

 Apr 20, 2019
 #2
avatar+7499 
+1

Make use of the identity: \(z\cdot z^{*} = |z|^2\).

\((z-5-i)(z-5-i)^* = 25\)

Let z = x + y i.

\(((x-5)+(y-1)i)((x-5)+(1-y)i) = 25\\ (x-5)^2 + (y-1)^2 = 25\)

So the equation |z - 5 - i| = 5 actually represents a circle centered at z = 5 + i and with radius 5.

 

Expressing the given expression with x and y:

\(|z-1+2i|^2 + |z-9-4i|^2\\ =(x-1)^2+(y+2)^2 + (x-9)^2 + (y-4)^2\\ = x^2-2x+1+y^2+4y+4+x^2-18x+81+y^2-8y+16\\ =2x^2+2y^2-20x-4y+102\\ =2(x^2+y^2-10x-2y+102)\\ =2((x-5)^2+(y-1)^2+76)\)

And because \((x-5)^2+(y-1)^2 = 25\),

\(|z-1+2i|^2 + |z-9-4i|^2\\ =2(25+76)\\ =202\)

 

So the minimum value is 202.

 Apr 20, 2019

38 Online Users

avatar
avatar
avatar