+0  
 
0
772
1
avatar

The diagram below shows four circles. Let $A_1,$ $A_2,$ $A_3,$ $A_4$ denote the areas of the red region, yellow region, green region, blue region, respectively. These areas satisfy \[A_1 = \frac{A_2}{2} = \frac{A_3}{3} = \frac{A_4}{4}.\]Let $r_1$ denote the smallest radius, and let $r_4$ denote the largest radius. Find $\frac{r_4}{r_1}.

 

 

$ [asy] unitsize(1 cm); pair[] O; real[] r; O[1] = (0,0); O[2] = (0.1,0.2); O[3] = (-0.2,-0.1); O[4] = (0.1,-0.3); r[1] = 1; r[2] = 1.5; r[3] = 2; r[4] = 2.5; fill(Circle(O[4],r[4]),lightblue); draw(Circle(O[4],r[4])); label("$A_4$", (1.8,-1.5)); fill(Circle(O[3],r[3]),lightgreen); draw(Circle(O[3],r[3]));label("$A_3$", (-1.3,-1.3)); fill(Circle(O[2],r[2]),yellow); draw(Circle(O[2],r[2]));label("$A_2$", (1,1)); fill(Circle(O[1],r[1]),lightred); draw(Circle(O[1],r[1]));label("$A_1$", O[1]); [/asy]

 Jan 25, 2020
 #1
avatar+262 
+1

could you make your question readable? thanks

 Jan 25, 2020

1 Online Users

avatar