Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
-1
976
1
avatar+318 

Use the intermediate value theorem to show that the polynomial P(x) has a real zero in the interval [2,3]. Approximate this zero to two decimal places

 

P(x)=2x^4-4x^3-9

 Mar 11, 2020
 #1
avatar+118703 
-1

 

Use the intermediate value theorem to show that the polynomial P(x) has a real zero in the interval [2,3]. Approximate this zero to two decimal places

 

P(x)=2x^4-4x^3-9

 

I do not know offhand what intermediate value theorem is but I expect I can answer this question.

P(2)=2234239P(2)=16329P(2)=25 P(3)=2344339P(3)=1621089p(3)>0

 

Since P(2) is negative and P(3) is positive there must be a root between x=2 and x=3

Try P(2.5)

P(x)=2x44x39P(2.5)=22.5442.539P(2.5)=6.625P(2.5)>0

So it must be between  2 and 2.5   

The midpoint of 2 and 2.5 is 2.25

 

P(x)=2x44x39P(2.25)=22.25442.2539P(2.25)=3.3P(2.25)<0

 

So the root is between  2.25 and 2.50    The midpoint of these is  2.375

 

P(x)=2x44x39P(2.375)=22.375442.37539P(2.375)=1.047P(2.375)>0

 

So the root is between 2.25 and 2.375. The average of these is  2.3125

 

P(x)=2x44x39P(2.3125)=22.3125442.312539P(2.3125)=1.27P(2.3125)<0

 

So the root is between  2.3125 and 2.375  The average of these is  2.34375 which is approx 2.344

 

P(x)=2x44x39P(2.344)=22.344442.34439P(2.344)=0.139P(2.344)<0

 

So the root is between  2.344 and  2.375. The average of these is   2.3595  which is approx 2.360

 

P(x)=2x44x39P(2.360)=22.360442.36039P(2.360)=0.4638P(2.360)>0

 

So the root is between  2.360 and  2.344. The average of these is   2.352  

 

P(x)=2x44x39P(2.352)=22.352442.35239P(2.352)=0.159P(2.352)>0

 

So the root is between  2.352 and  2.344. The average of these is   2.348  

 

P(x)=2x44x39P(2.348)=22.348442.34839P(2.348)=0.00955P(2.348)>0

 

So the root is between  2.348 and  2.344. The average of these is   2.346

 

P(x)=2x44x39P(2.346)=22.346442.34639P(2.346)=0.65P(2.346)<0

 

So the root is between  2.346 and  2.348. 

 

So to 2 decimal places the root is approx 2.35

 

 

What an effort. Maybe you were meant to use a quicker method.

 

 

 

 

 

 

Coding:

P(2)=2*2^3-4*2^3-9\\
P(2)=16-32-9\\
P(2)=-25\\~\\
P(3)=2*3^4-4*3^3-9\\
P(3)=162-108-9\\
p(3)>0

 

P(x)=2x^4-4x^3-9\\
P(2.5)=2*2.5^4-4*2.5^3-9\\
P(2.5)=6.625\\
P(2.5)>0\\

 

P(x)=2x^4-4x^3-9\\
P(2.25)=2*2.25^4-4*2.25^3-9\\
P(2.25)=-3.3
\\P(2.25)<0

 

P(x)=2x^4-4x^3-9\\
P(2.375)=2*2.375^4-4*2.375^3-9\\
P(2.375)=1.047
\\P(2.375)>0

 

P(x)=2x^4-4x^3-9\\
P(2.3125)=2*2.3125^4-4*2.3125^3-9\\
P(2.3125)=-1.27
\\P(2.3125)<0

 

P(x)=2x^4-4x^3-9\\
P(2.344)=2*2.344^4-4*2.344^3-9\\
P(2.344)=-0.139
\\P(2.344)<0

 

P(x)=2x^4-4x^3-9\\
P(2.360)=2*2.360^4-4*2.360^3-9\\
P(2.360)=0.4638
\\P(2.360)>0

 

P(x)=2x^4-4x^3-9\\
P(2.352)=2*2.352^4-4*2.352^3-9\\
P(2.352)=0.159
\\P(2.352)>0

 

P(x)=2x^4-4x^3-9\\
P(2.348)=2*2.348^4-4*2.348^3-9\\
P(2.348)=0.00955
\\P(2.348)>0

 Mar 11, 2020

2 Online Users

avatar
avatar