+0  
 
+1
1712
1
avatar

A triangle is formed with edges along the line $y=\frac{2}{3}x+5$, the $x$-axis, and the line $x=k$. If the area of the triangle is less than $20$, find the sum of all possible integral values of $k$.

 Feb 28, 2018
 #1
avatar+130066 
+1

Look at the graph, here...two triangles are possible :

 

https://www.desmos.com/calculator/m6wnjpgldq

 

The  height of the triangles at any point will be formed by

 

[ (2/3)x + 5 ]

 

And the bases will be  [ x - (- 7.5)]   = [ x + 7.5]

 

So....we want to solve this

 

(1/2) [ (2/3)x + 5 ] [ x + 7.5 ]  =  20

 

[ (2/3)x + 5 ] [ x + 7.5]  =  40

 

(2/3)x^2 + 5x + 5x  + 37.5  = 0

 

(2/3)x^2 + 10x - 2.5  =  0

 

Using a little technology.....the max x  value for the triangle formed above the x axis will be ≈ .246

And the min x value for the triangle formed below the x axis will be ≈ -15.246 

 

With the given boundaries, the  integer sums  of all possible x values of k giving  triangles with an area < 20 units^2  =

 

[ (-15) + (-14 ) + (-13) + ...+ ( -2) + ( - 1 ) + 0 ]  =  

 

-  (15) (16) / 2   =

 

-120

 

 

cool cool cool

 Feb 28, 2018

5 Online Users

avatar
avatar