1. Consider the infinite arithmetic sequence $A$ with first term $5$ and common difference $-2$. Now define the infinite sequence $B$ so that the $k^{th}$ term of $B$ is $2$ raised to the $k^{th}$ term of $A$. Find the sum of all of the terms of $B$.

2. The terms $140, a, \frac{45}{28}$ are the first, second and third terms, respectively, of a geometric sequence. If $a$ is positive, what is the value of $a$?

Guest May 8, 2018

#1**+2 **

"*1. Consider the infinite arithmetic sequence $A$ with first term $5$ and common difference $-2$. Now define the infinite sequence $B$ so that the $k^{th}$ term of $B$ is $2$ raised to the $k^{th}$ term of $A$. Find the sum of all of the terms of $B$.*"

.

Alan May 8, 2018