+0  
 
0
56
3
avatar

1. Consider the infinite arithmetic sequence $A$ with first term $5$ and common difference $-2$. Now define the infinite sequence $B$ so that the $k^{th}$ term of $B$ is $2$ raised to the $k^{th}$ term of $A$. Find the sum of all of the terms of $B$.

2. The terms $140, a, \frac{45}{28}$ are the first, second and third terms, respectively, of a geometric sequence. If $a$ is positive, what is the value of $a$?

Guest May 8, 2018
Sort: 

3+0 Answers

 #1
avatar+26689 
+1

"1. Consider the infinite arithmetic sequence $A$ with first term $5$ and common difference $-2$. Now define the infinite sequence $B$ so that the $k^{th}$ term of $B$ is $2$ raised to the $k^{th}$ term of $A$. Find the sum of all of the terms of $B$."

 

.

Alan  May 8, 2018
 #2
avatar+26689 
+1

"2. The terms $140, a, \frac{45}{28}$ are the first, second and third terms, respectively, of a geometric sequence. If $a$ is positive, what is the value of $a$?"

 

Alan  May 8, 2018
 #3
avatar+19376 
0

2. The terms $140, a, \frac{45}{28}$ are the first, second and third terms, respectively, of a geometric sequence. If $a$ is positive, what is the value of $a$?

 

 

\(\begin{array}{|rcll|} \hline a &=& \sqrt{140\cdot \frac{45}{28}} \\ a &=& 15 \\ \hline \end{array}\)

 

laugh

heureka  May 8, 2018

6 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy