Cant figure this one out:
Suppose z is a complex number such that z3=100+75i . Find |z|.
Suppose z is a complex number such that z3=100+75i . Find |z|
|z3|=√1002+752|z3|=√1002+752|z3|=125z3=125[100+75i125]z3=125[ 0.8+0.5i]
Let
z=reiθz3=r3e3iθz3=r3(cos(3θ)+isin(3θ))
r3(cos(3θ)+isin(3θ))=125[ 0.8+0.6i]r3=125r=5cos(3θ)=0.8sin(3θ)=0.63θ≈0.6435θ≈0.2145radians
anyway, I digress,
|z|=5