+0  
 
+2
139
3
avatar+299 

Simplify and state the excluded values. Show all work.

 Nov 2, 2018
 #1
avatar+4396 
+1

\(\dfrac{b^2 + 10b + 24}{10b^2+40b} = \\ \dfrac{ b^2 + 10 b + 24}{10b(b+4)} = \\ \dfrac{(b+6)(b+4)}{10b(b+4)}=\\ \dfrac{b+6}{10b}\)

 

The only excluded value is 

\(b=0\)

.
 Nov 2, 2018
 #2
avatar+98042 
+1

The numerator is a polynomial......so any real number  b will "work"

 

We only have to worry about the  denominator  being 0

 

To find which values make this so we have

 

10b^2 + 40b  =  0      factor

 

10b ( b + 4)  =  0

 

So  either   10b  = 0   and b  = 0   or  b + 4  = 0   and b  = -4

 

So...the excluded values  are   0  and - 4

 

The simplified rational function is  just as Rom found....

 

 

cool cool cool

 Nov 3, 2018
 #3
avatar+4396 
0

I don't agree that -4 is an excluded value.

Rom  Nov 3, 2018

29 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar