+0  
 
0
93
3
avatar+253 

Simplify and state the excluded values. Show all work.

 Nov 2, 2018
 #1
avatar+3617 
+1

\(\dfrac{b^2 + 10b + 24}{10b^2+40b} = \\ \dfrac{ b^2 + 10 b + 24}{10b(b+4)} = \\ \dfrac{(b+6)(b+4)}{10b(b+4)}=\\ \dfrac{b+6}{10b}\)

 

The only excluded value is 

\(b=0\)

.
 Nov 2, 2018
 #2
avatar+94545 
+1

The numerator is a polynomial......so any real number  b will "work"

 

We only have to worry about the  denominator  being 0

 

To find which values make this so we have

 

10b^2 + 40b  =  0      factor

 

10b ( b + 4)  =  0

 

So  either   10b  = 0   and b  = 0   or  b + 4  = 0   and b  = -4

 

So...the excluded values  are   0  and - 4

 

The simplified rational function is  just as Rom found....

 

 

cool cool cool

 Nov 3, 2018
 #3
avatar+3617 
0

I don't agree that -4 is an excluded value.

Rom  Nov 3, 2018

25 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.