Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
930
4
avatar

Please help me differentiate in terms of x and y for sin(x+y)=cosy

 Jan 19, 2015

Best Answer 

 #1
avatar+118703 
+10

PLEASE NOTE :  I have no idea if this is correct - someone please check   

sin(x+y)=cosy

differentiate y in terms of x

 

sin(x+y)=cosycos(x+y)[1+dydx]=(siny)dydxcos(x+y)+cos(x+y)dydx+(siny)dydx=0cos(x+y)dydx+(siny)dydx=cos(x+y)dydx[cos(x+y)+(siny)]=cos(x+y)dydx=cos(x+y)cos(x+y)+(siny)

 

If that is correct then i guess

 

\frac{dx}{dy}&=&\frac{cos(x+y)+(siny)}{-cos(x+y)}\\\\

 Jan 19, 2015
 #1
avatar+118703 
+10
Best Answer

PLEASE NOTE :  I have no idea if this is correct - someone please check   

sin(x+y)=cosy

differentiate y in terms of x

 

sin(x+y)=cosycos(x+y)[1+dydx]=(siny)dydxcos(x+y)+cos(x+y)dydx+(siny)dydx=0cos(x+y)dydx+(siny)dydx=cos(x+y)dydx[cos(x+y)+(siny)]=cos(x+y)dydx=cos(x+y)cos(x+y)+(siny)

 

If that is correct then i guess

 

\frac{dx}{dy}&=&\frac{cos(x+y)+(siny)}{-cos(x+y)}\\\\

Melody Jan 19, 2015
 #2
avatar+130477 
+5

Both answers are correct, Melody....

 

 Jan 19, 2015
 #3
avatar+118703 
+5

Thanks Chris.   

 Jan 19, 2015
 #4
avatar
+5

Ahh, thanks guys!

 Jan 21, 2015

4 Online Users

avatar