PLEASE NOTE : I have no idea if this is correct - someone please check
sin(x+y)=cosy
differentiate y in terms of x
sin(x+y)=cosycos(x+y)[1+dydx]=−(siny)dydxcos(x+y)+cos(x+y)dydx+(siny)dydx=0cos(x+y)dydx+(siny)dydx=−cos(x+y)dydx[cos(x+y)+(siny)]=−cos(x+y)dydx=−cos(x+y)cos(x+y)+(siny)
If that is correct then i guess
\frac{dx}{dy}&=&\frac{cos(x+y)+(siny)}{-cos(x+y)}\\\\
PLEASE NOTE : I have no idea if this is correct - someone please check
sin(x+y)=cosy
differentiate y in terms of x
sin(x+y)=cosycos(x+y)[1+dydx]=−(siny)dydxcos(x+y)+cos(x+y)dydx+(siny)dydx=0cos(x+y)dydx+(siny)dydx=−cos(x+y)dydx[cos(x+y)+(siny)]=−cos(x+y)dydx=−cos(x+y)cos(x+y)+(siny)
If that is correct then i guess
\frac{dx}{dy}&=&\frac{cos(x+y)+(siny)}{-cos(x+y)}\\\\