+0  
 
0
28
1
avatar

A fruit seller had the same number of papayas and mangoes at first. He

threw away 85 rotten papayas and sold 1/4 of his remaining papayas. He

threw away 60 rotten mangoes and sold 1/3 of his remaining mangoes. After

that, he was left with an equal number of papayas and mangoes.

(a)  How many papayas did the fruit seller have at first?

(b)  The fruit seller sold his mangoes at 3 for $5.80.  How much did he

       collect from the sale of the mangoes?

 Nov 9, 2021
 #1
avatar
+1

No. of papayas = No. of mangoes = x

 

He threw 85 papayas

 then remaining papayas = x - 85

 sold = (x-85) * 1/4 -----(1)

 

He threw 60 rotten mangoes the

  remaining mangoes = (x - 60)

 sold mangoes = (x - 60) 1/3.

Now (No. of Remaining)

        ( Mangoes after    ) = (No.  of Remaining)

        (      selling           )     ( papayas after      )

                                           ( selling                 )

      (x - 85) - (\( {x - 85\over 4}\)) = (x - 60) - (\( {x - 60 \over 3})\)
  => (x - 85) (1 - \({1 \over 4}\)) = (x - 60) (1 - \( {1 \over 3}\))

  => (x - 85) * 3/4 = (x - 60) 2/3

  => 9x - 85 * 9 = 8x - 60 * 8

  =>  x = 85 * 9 - 60 * 8

           = 765 - 480

        x  =  285

 

 

 

  sold mangoes (x - 60) * \( {1 \over 3}\)

                      = (\( {(285 - 60) \over 3} = {225 \over 3} = \)

                      = 75

 

    3 For $ 5.8

  Collected Money = \( {75 \over 3} * 5.8\)

                             = 25 * 5.8 = 145.0$

                                                    Ans 

 Nov 14, 2021

9 Online Users

avatar