+0  
 
+1
33
1
avatar+38 

 For a triangle XYZ, we use [XYZ] to denote its area.

Let ABCD be a square with side length 1. Points E and F lie on line BC and line CD, respectively, in such a way that angle EAF=45 degrees If [CEF]=1/9, what is the value of [AEF]?

 
NerdyKid  Oct 13, 2018
 #1
avatar+7493 
+2

 For a triangle XYZ, we use [XYZ] to denote its area.
Let ABCD be a square with side length 1. Points E and F lie on line BC and line CD, respectively, in such a way that angle EAF=45 degrees If [CEF]=1/9, what is the value of [AEF]?

 

Hello NerdyKid!

 

 

[ABCD] = \(1m^2\)

[CEF] = \(\frac{1}{9}m^2\)

\([CEF]=\frac{\overline{FC}^2}{2}=\frac{1}{9}m^2\\ \overline{FC}=\sqrt{\frac{2}{9}}m=\frac{\sqrt{2}}{3}m\\ \overline{DF}=1m-\overline{FC}=(1-\frac{\sqrt{2}}{3})m\)

\(2[ADF]=(1-\sqrt{\frac{2}{9}})m\cdot 1m=(1-\frac{\sqrt{2}}{3})m^2\)

\([AEF]=1m^2-[CEF]-2[ADF]\\ [AEF]=1m^2-\frac{1}{9}m^2-(1-\frac{ \sqrt{2}}{3})m^2 \\ [AEF]=1m^2-\frac{1}{9}m^2-1m^2+\frac{3\cdot \sqrt{2}}{9}m^2\\ [AEF]=\frac{3\cdot \sqrt{2}\ -1}{9} m^2 \\ \color{blue}[AEF]\approx0.3602934\ m^2\)

I have to recalculate that.

blush     asinus

I calculated it. It is true.

laugh  !

 
asinus  Oct 13, 2018
edited by asinus  Oct 14, 2018
edited by asinus  Oct 14, 2018
edited by asinus  Oct 14, 2018

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.