Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
463
1
avatar

The graphs of a function $f(x)=3x+b$ and its inverse function $f^{-1}(x)$ intersect at the point $(-3,a)$. Given that $b$ and $a$ are both integers, what is the value of $a$?

 Nov 24, 2014

Best Answer 

 #1
avatar+23254 
+5

I'm not certain that this is the easiest way, but ...

I'm going to find the inverse of y  =  3x + b

--->  x  =  3y + b

--->  x - b  =  3y

--->  y  =  (x - b)/3

Since they intersect at the point (-3, a), set the two equations equal to each other:

--->  3x + b  =  (x - b)/3

--->  9x + 3b  =  x - b

--->  8x  =  - 4b

Since x = -3 at that point:

--->  8(-3)  =  -4b

--->   -24  =  -4b

--->  b  =  6

Original equation is y  =  3x + 6

At the point (-3, a) --->  a  =  3(-3) + 6   --->   a  =  -9 + 6   --->   a = -3

 Nov 24, 2014
 #1
avatar+23254 
+5
Best Answer

I'm not certain that this is the easiest way, but ...

I'm going to find the inverse of y  =  3x + b

--->  x  =  3y + b

--->  x - b  =  3y

--->  y  =  (x - b)/3

Since they intersect at the point (-3, a), set the two equations equal to each other:

--->  3x + b  =  (x - b)/3

--->  9x + 3b  =  x - b

--->  8x  =  - 4b

Since x = -3 at that point:

--->  8(-3)  =  -4b

--->   -24  =  -4b

--->  b  =  6

Original equation is y  =  3x + 6

At the point (-3, a) --->  a  =  3(-3) + 6   --->   a  =  -9 + 6   --->   a = -3

geno3141 Nov 24, 2014

2 Online Users