+0

0
31
7
+51

What is the number of degrees in the acute angle formed by the hands of a clock at 6:44?

Jun 10, 2021

#1
+32561
+2

From the 12:00 position the hour hand moves   1/2 degree per minute

the minute hand moves  6 degrees per minute

at 6 oclock + 44 minutes  the hour hand is at 180 degrees + 44 (1/2) = 202 degrees

the minute hand at :44 is at     44 * 6 = 264 degrees

264 - 202 = 62 degrees between them

Jun 11, 2021
edited by ElectricPavlov  Jun 11, 2021
#2
+51
+2

Thank you @ElectricPavlov!

NaturalDisaster  Jun 11, 2021
#3
+113567
+1

But at 6:44 the hour hand is not at 6 so this not an exact answer.

Jun 11, 2021
#4
+32561
+2

Melody....   I summed  the   6 oclock time + 44 minutes for the hour hand....

ElectricPavlov  Jun 11, 2021
edited by ElectricPavlov  Jun 11, 2021
#5
+2

Yep... Melody is behind her time on this one....   LOOOOOL

Guest Jun 11, 2021
#7
+113567
0

oh yea  Sorry

Melody  Jun 11, 2021
#6
+25911
+3

What is the number of degrees

in the acute angle formed by the hands of a clock at 6:44?

Formula: $$\boxed{\Delta\alpha^\circ = 330 * t^h}$$

$$\begin{array}{|rcll|} \hline \Delta\alpha^\circ &=& 330 * t^h \\\\ \Delta\alpha^\circ &=& 330 * (6+\dfrac{44}{60}) \\\\ \Delta\alpha^\circ &=& 330 * 6.7333333333^h \\ \Delta\alpha^\circ &=& 2222^\circ \\ \Delta\alpha^\circ &=& 62^\circ +6*360^\circ \\ \mathbf{\Delta\alpha^\circ} &=& \mathbf{62^\circ} \\ \hline \end{array}$$

Jun 11, 2021