We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
144
1
avatar

We have triangle $\triangle ABC$ where $AB = AC$ and $AD$ is an altitude. Meanwhile, $E$ is a point on $AC$ such that $AB \parallel DE.$ If $BC = 12$ and the area of $\triangle ABC$ is $180,$ what is the area of $ABDE$?

 Aug 4, 2019
 #1
avatar+23352 
+3

We have triangle \(\triangle ABC\) where \(AB = AC\) and \(AD\) is an altitude.
Meanwhile, \(E\) is a point on \(AC\) such that \(AB \parallel DE\).
If \(BC = 12\) and the area of  \(\triangle ABC\) is \(180\), what is the area of \(ABDE\)?

 

\(\text{Let $AB = AC $ } \\ \text{Let $DB = CD =\dfrac{BC}{2} = 6$ } \)

 

\(\begin{array}{|rcll|} \hline \text{area of } \triangle ABC =180 &=& \dfrac{BC*AD}{2} \\ 180 &=& \dfrac{12*AD}{2} \\ 180 &=& 6AD \\ \mathbf{ AD } &=& \mathbf{30} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{CD}{ED} &=& \dfrac{BC}{AB} \\\\ \dfrac{6}{ED} &=& \dfrac{12}{AB} \\\\ \dfrac{ED}{6} &=& \dfrac{AB}{12} \\\\ \mathbf{ED }&=& \mathbf{\dfrac{AB}{2}} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \text{area of } ABDE &=& \dfrac{AB+ED}{2}\times H \quad| \quad H=\dfrac{DB*AD}{AB}=\dfrac{6*30}{AB} \\\\ \text{area of } ABDE &=& \left(\dfrac{AB+ED}{2}\right)\times \dfrac{6*30}{AB} \\\\ \text{area of } ABDE &=& \left(\dfrac{AB+\dfrac{AB}{2}}{2}\right)\times \dfrac{6*30}{AB} \\\\ \text{area of } ABDE &=& \dfrac{3}{4}AB\times \dfrac{6*30}{AB} \\\\ \text{area of } ABDE &=& 3* 3*15 \\\\ \mathbf{\text{area of } ABDE} &=& \mathbf{135} \\ \hline \end{array}\)

 

laugh

 Aug 5, 2019

7 Online Users

avatar