Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1154
1
avatar

We have triangle $\triangle ABC$ where $AB = AC$ and $AD$ is an altitude. Meanwhile, $E$ is a point on $AC$ such that $AB \parallel DE.$ If $BC = 12$ and the area of $\triangle ABC$ is $180,$ what is the area of $ABDE$?

 Aug 4, 2019
 #1
avatar+26397 
+3

We have triangle ABC where AB=AC and AD is an altitude.
Meanwhile, E is a point on AC such that ABDE.
If BC=12 and the area of  ABC is 180, what is the area of ABDE?

 

Let AB=AC Let DB=CD=BC2=6 

 

area of ABC=180=BCAD2180=12AD2180=6ADAD=30

 

CDED=BCAB6ED=12ABED6=AB12ED=AB2

 

area of ABDE=AB+ED2×H|H=DBADAB=630ABarea of ABDE=(AB+ED2)×630ABarea of ABDE=(AB+AB22)×630ABarea of ABDE=34AB×630ABarea of ABDE=3315area of ABDE=135

 

laugh

 Aug 5, 2019

1 Online Users