We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
114
2
avatar+59 

One ordered pair (\(a,b\)) satisfies the two equations \(ab^4=12\) and \(a^5 b^5 = 7776\). What is the value of a in this ordered pair

 Jun 29, 2019
edited by BIGChungus  Jun 29, 2019

Best Answer 

 #2
avatar+8720 
+5

\(a^5b^5\ =\ 7776\\~\\ (ab)^5\ =\ 7776\\~\\ ab\ =\ \sqrt[5]{7776}\\~\\ ab\ =\ 6\\~\\ b\ =\ \frac6a\)

 

We can substitute this value in for  b  in the other given equation.

 

\(ab^4\ =\ 12\\~\\ a(\frac6a)^4\ =\ 12\\~\\ \frac{6^4}{a^3}\ =\ \frac{12}{1}\\~\\ 12a^3\ =\ 6^4\\~\\ a^3\ =\ \frac{6^4}{12}\\~\\ a^3\ =\ 108\\~\\ a\ =\ \sqrt[3]{108}\)_

 Jun 29, 2019
 #1
avatar+59 
0

nvm I got the answer

 Jun 29, 2019
 #2
avatar+8720 
+5
Best Answer

\(a^5b^5\ =\ 7776\\~\\ (ab)^5\ =\ 7776\\~\\ ab\ =\ \sqrt[5]{7776}\\~\\ ab\ =\ 6\\~\\ b\ =\ \frac6a\)

 

We can substitute this value in for  b  in the other given equation.

 

\(ab^4\ =\ 12\\~\\ a(\frac6a)^4\ =\ 12\\~\\ \frac{6^4}{a^3}\ =\ \frac{12}{1}\\~\\ 12a^3\ =\ 6^4\\~\\ a^3\ =\ \frac{6^4}{12}\\~\\ a^3\ =\ 108\\~\\ a\ =\ \sqrt[3]{108}\)_

hectictar Jun 29, 2019

42 Online Users

avatar