+0  
 
0
36
2
avatar+44 

Question 3 asked for two possible quadrant locations of the product of c + di and , where c, d, e, and f are positive real numbers. The product in question 4 was two complex numbers of the form c + di and , where c, d, e, and f are positive real numbers. You answered the quadrant location of this product.

Provide an example of two complex numbers in the form c + di and , where c, d, e, and f are positive real numbers such that their product lies in the other possible quadrant. Support your example by determining its product.

 May 22, 2020
 #1
avatar+20883 
0

I'm not sure what you are asking --

 

In problem 3, are you asking for an example whose product ends in QI and another example whose

product ends in QIV?

If so, (8 + 7i)(6 - 5i)  =  83 + 2i    (QI)

         (3 + 4i)(1 - 2i)  =  11 - 2i     (QIV)

 

In problem 4, are you asking how to solve the problem?

If so:  4sqrt(3) - 4i

          r  =  sqrt( ( 4sqrt(3) )2 + ( -4 )2 )  =  sqrt( 48 + 16 )  =  sqrt( 64 )  =  8

          theta  =  tan-1( -4 / (4sqrt(3) )  =  tan-1( - 1 / sqrt(3) )  =  (-1/6)·pi

          --->     4sqrt(3) - 4i  =  8·cis( (-1/6)·pi )

 

         sqrt(2) + sqrt(2)·i

         r  =  sqrt( ( sqrt(2) )2 + ( sqrt(2) )2 )  =  sqrt( 2 + 2 )  =  sqrt( 4 )  =  2

          theta  =  tan-1( sqrt(2) / sqrt(2) )  =  tan-1( 1 )  =  pi/4

          --->     sqrt(2) + sqrt(2)·i  =  2·cis( pi/4 )

 

Multiplying them together:  8·cis( (-1/6)·pi ) x 2·cis( pi/4 )  =  16·cis( 1/12·pi )

 
 May 22, 2020
 #2
avatar+44 
0

question 3 and 4 is done but it mentions them in the question so I included the.  The question is Provide an example of two complex numbers in the form c + di and , where c, d, e, and f are positive real numbers such that their product lies in the other possible quadrant. Support your example by determining its product.

 
jscare  May 22, 2020

15 Online Users

avatar
avatar
avatar
avatar