+0  
 
+1
129
2
avatar+604 

 

 

If $x+\frac1x=-5$, what is $x^3+\frac1{x^3}$?

gueesstt  Apr 9, 2018
 #1
avatar+92940 
+2

 

 

\(x+\frac1x=-5, \;\;\;what \;\;\;is\;\;\;x^3+\dfrac1{x^3}\\~\\ \left(x+\frac{1}{x}\right)^3=x^3+3x^2*\frac{1}{x}+3x*\frac{1}{x^2}+\frac{1}{x^3}\\ \left(x+\frac{1}{x}\right)^3=x^3+3x+\frac{3}{x}+\frac{1}{x^3}\\ \left(x+\frac{1}{x}\right)^3=x^3+\frac{1}{x^3}+3(x+\frac{1}{x})\\ sub\\ (-5)^3=x^3+\frac{1}{x^3}+3(-5)\\ -125=x^3+\frac{1}{x^3}-15\\ -110=x^3+\frac{1}{x^3}\\ x^3+\frac{1}{x^3}=110 \)

Melody  Apr 9, 2018
 #2
avatar+604 
0

You were almost correct! It was actually -110. Thank you for the help: 

 

To get $x^3$ and $\frac1{x^3}$, we cube $x+\frac1x$: $$-125=(-5)^3=\left(x+\frac1x\right)^3=x^3+3x+\frac3x+\frac1{x^3}$$ by the Binomial Theorem. Conveniently, we can evaluate $3x + \frac{3}{x}$ as $3\left(x+\frac1x\right)=3(-5)=-15$, so $$x^3+\frac1{x^3}=(-125)-(-15)=\boxed{-110}.$$

gueesstt  Apr 9, 2018

11 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.