Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
41
2
avatar+302 

For how many positive values of n are both n2 and 3n four-digit base 9 integers?

Best Answer 

 #1
avatar+9675 
+1

n2 is an integer implies n is even. The smallest four-digit base 9 integer is (1000)9, which is 93=729, but this is not even, so n2 is at least 729 + 1 = 730. This gives the lower bound n1460.

While n/2 is a four-digit base 9 integer, 3n cannot exceed the maximum value of four-digit base 9 integers. that value is (8888)9, which is 8(93+92+9+1)=6560, but it is not divisible by 3. That means 3n6558, i.e., n2186 is the upper bound.

 

To ensure that n/2 is an integer, the answer is the number of even numbers n in the range 1460n2186, i.e., 218614602+1=364.

 Apr 8, 2024
 #1
avatar+9675 
+1
Best Answer

n2 is an integer implies n is even. The smallest four-digit base 9 integer is (1000)9, which is 93=729, but this is not even, so n2 is at least 729 + 1 = 730. This gives the lower bound n1460.

While n/2 is a four-digit base 9 integer, 3n cannot exceed the maximum value of four-digit base 9 integers. that value is (8888)9, which is 8(93+92+9+1)=6560, but it is not divisible by 3. That means 3n6558, i.e., n2186 is the upper bound.

 

To ensure that n/2 is an integer, the answer is the number of even numbers n in the range 1460n2186, i.e., 218614602+1=364.

MaxWong Apr 8, 2024
 #2
avatar+9675 
+1

Sorry, there is a mistake in my argument: n2 can in fact be 729, so the lower bound is n1458. The answer is then 365 instead of 364.

MaxWong  Apr 8, 2024

0 Online Users