c = 3 log y^2 b^3
d = 2 log y^3 b^2
Using the change of base theorem
d = 2 [ log b^2 ] / [ log y^3 ] = [ 2* 2 log b ] / [ 3 log y]
c = 3 [ log b^3] / [ log y^2] = [ 3*3 log b ] [ 2 log y]
d / c = (4 log b) / ( 3 log y) 4 log b * 2 log y
_________________ = ________________ = 8 / 27
(9 log b) / ( 2 log y) 9 log b * 3 log y