We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
114
1
avatar

SOLUTION??

 Jun 8, 2019

Best Answer 

 #1
avatar+8759 
+4

\((2,3)\)  is at the polar coordinates of  \((r,\theta)\)  so:

 

\(2\ =\ r\cos\theta\\~\\ 3\ =\ r\sin\theta\)

 

 

\((x_1,y_1)\)  is at the polar coordinates of  \((2r,\theta+\frac{\pi}{2})\)  so:

 

\(\begin{array}{} x_1\ =\ (2r)\cos(\theta+\frac{\pi}{2})&=&(2r)(-\sin\theta)&=&(-2)(r\sin\theta)&=&(-2)(3)&=&-6\\~\\ y_1\ =\ (2r)\sin(\theta+\frac{\pi}{2})&=&(2r)(\cos\theta)&=&(2)(r\cos\theta)&=&(2)(2)&=&4 \end{array}\)

 

 

\((x_2,y_2)\)  is at the polar coordinates of  \((-r,-\theta)\)  so:

 

\(\begin{array}{c} x_2\ =\ (-r)\cos(-\theta)&=&(-r)\cos\theta&=&-(r\cos\theta)&=&-2\\~\\ y_2\ =\ (-r)\sin(-\theta)&=&(-r)(-\sin\theta)&=&r\sin\theta&=&3 \end{array}\)_

 Jun 9, 2019
 #1
avatar+8759 
+4
Best Answer

\((2,3)\)  is at the polar coordinates of  \((r,\theta)\)  so:

 

\(2\ =\ r\cos\theta\\~\\ 3\ =\ r\sin\theta\)

 

 

\((x_1,y_1)\)  is at the polar coordinates of  \((2r,\theta+\frac{\pi}{2})\)  so:

 

\(\begin{array}{} x_1\ =\ (2r)\cos(\theta+\frac{\pi}{2})&=&(2r)(-\sin\theta)&=&(-2)(r\sin\theta)&=&(-2)(3)&=&-6\\~\\ y_1\ =\ (2r)\sin(\theta+\frac{\pi}{2})&=&(2r)(\cos\theta)&=&(2)(r\cos\theta)&=&(2)(2)&=&4 \end{array}\)

 

 

\((x_2,y_2)\)  is at the polar coordinates of  \((-r,-\theta)\)  so:

 

\(\begin{array}{c} x_2\ =\ (-r)\cos(-\theta)&=&(-r)\cos\theta&=&-(r\cos\theta)&=&-2\\~\\ y_2\ =\ (-r)\sin(-\theta)&=&(-r)(-\sin\theta)&=&r\sin\theta&=&3 \end{array}\)_

hectictar Jun 9, 2019

31 Online Users

avatar