+0  
 
0
90
3
avatar+156 

Please help me! Thank you!

mathelp  Aug 17, 2018
 #1
avatar
+2

I can help with part 2. 

 

angle A is cos(16/20) and angle B is sin(12/20)

Guest Aug 17, 2018
 #2
avatar+7336 
+3

S  =  2r3t

                       To solve this equation for  t ,  first let's divide both sides by  2 .

\(\frac{S}{2}\)  =  r3t

                       Next divide both sides by  r3 .

\(\frac{S}{2r^3}\)  =  t

 

t  =  \(\frac{S}{2r^3}\)

 

---------------------------

 

4x2 - 376  =  24

                                 To solve this equation for  x , first let's add  376  to both sides.

4x2  =  24 + 376

 

4x2  =  400

                                 Then divide both sides by  4 .

x2  =  400/4

 

x2  =  100

                                 Then take the ± square root of both sides.

x  =  ±√100

 

x  =  ± 10

 

This means there are two values of  x  that make the equation true,

and those two values are 10  and  -10 .

hectictar  Aug 17, 2018
 #3
avatar+7336 
+3

For the third question...

 

∠A  and  ∠B  must be acute angles because the third angle is 90°, and the sum of the angle measures in a triangle is 180°, and each angle has to have a measure greater than 0°. (If either  ∠A  or  ∠B  were  90°  then two of the sides would be parallel, and they could never meet.)

 

First let's find the sine and cosine of angle A .

 

sin A  =  opposite / hypotenuse

sin A  =  12 / 20

sin A  =  3 / 5

 

cos A  =  adjacent / hypotenuse

cos A  =  16 / 20

cos A  =  4 / 5

 

Next let's find the sine and cosine of angle B .

 

sin B  =  opposite / hypotenuse

sin B  =  16 / 20

sin B  =  4 / 5

 

cos B  =  adjacent / hypotenuse

cos B  =  12 / 20

cos B  =  3 / 5

hectictar  Aug 17, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.