+0  
 
0
325
3
avatar

What is the equation of the parabola passing through (1,5), (0,6), and (2,3)?

Guest Apr 14, 2017
 #1
avatar+7449 
0

What is the equation of the parabola passing through (1.5), (0.6), and (2,3)?


Is it a parable of 2 or 3 potency?
Also a circle cuts the three points.

asinus  Apr 14, 2017
 #2
avatar+88899 
+2

(1,5), (0,6), and (2,3)

 

We have this form

 

y = a(x - h)^2  + k       where "a" determines the width (and direction - "up" or "down" ) of the parabola, and (h,k) is the vertex

 

So  we know that

 

5  =  a ( 1 - h)^2 + k     →  5 = a(1 -2h + h^2) + k  →  5 = a -2ah + ah^2 + k   (1)

6  = a(0 - h)^2 + k  →  6 = ah^2 + k   (2)

3 = a(2 - h)^2 + k   →  3 = a(4 - 4h + h^2) + k → 3 =  4a -4ah +ah^2 + k     (3) 

 

Sub ( 2) into  (1)  and (3)

 

5 =  a - 2ah + 6     →  -1  =  a - 2ah   ( 4)

3  = 4a - 4ah + 6  →  -3 = 4a - 4ah     (5)

 

Multiply  (4) by -2 and add it to (5)

 

-1  =  2a    →  a  = -1/2

 

Using (4)  to find h, we have

 

-1 = (-1/2) - 2 (-1/2)h

-1/2  =  h

 

Using (2)  to find k, we have

 

 6 = (-1/2)(1/4) + k

 

k = 6 + 1/8  =  49/8

 

So..........our equation is

 

y = (-1/2)(x + 1/2)^2 + 49/8

 

Here's the graph with the points of interest  : https://www.desmos.com/calculator/vnyrl52lp8

 

 

cool cool cool

CPhill  Apr 14, 2017
 #3
avatar+20009 
+1

What is the equation of the parabola passing through (1,5), (0,6), and (2,3)?

 

Formula parabola:

\(\begin{array}{|rcll|} \hline y = ax^2+bx+c \\ \hline \end{array} \)

 

a, b, c = ?

\(\begin{array}{|lrcll|} \hline P(0,6): & 6 &=& 0^2\cdot a+0\cdot b+c \\ & 6 &=& c \\\\ P(1,5): & 5 &=& 1^2\cdot a+1\cdot b+c \\ & 5 &=& a+b+c \quad & | \quad c=6 \\ (1) & 5 &=& a+b+6 \\\\ P(2,3): & 3 &=& 2^2\cdot a+2\cdot b+c \\ & 3 &=& 4a+2b+c \quad & | \quad c=6 \\ (2) & 3 &=& 4a+2b+6 \\ \hline \end{array} \)

 

a, b = ?

\(\begin{array}{|rcll|} \hline (2) & 3 &=& 4a+2b+6 \quad & | \quad : 2\\ & 1.5 &=& 2a+b+3 \\\\ (1) & 5 &=& a+b+6 \\ \hline (2)-(1): & 1.5-5 &=& 2a+b+3- (a+b+6) \\ & -3.5 &=& 2a+b+3- a-b-6 \\ & -3.5 &=& a-3 \\ & -0.5 &=& a \\\\ & 5 &=& a+b+6 \quad & | \quad a=-0.5 \\ & 5 &=& -0.5+b+6 \\ & 5 &=& 5.5+b \\ & 5-5.5 &=& b \\ & -0.5 &=& b \\ \hline \end{array} \)

 

Formula parabola:

\(\begin{array}{|rcll|} \hline y &=& ax^2+bx+c \quad & | \quad a=-0.5 \quad b=-0.5 \quad c=6 \\ \mathbf{y} & \mathbf{=} & \mathbf{-0.5x^2-0.5x+6} \\ \hline \end{array}\)

 

laugh

heureka  Apr 18, 2017

28 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.