Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
902
2
avatar

Helppppppppp

 Feb 16, 2015

Best Answer 

 #1
avatar+118703 
+5

This is the cross section of the cone of solid X.    

The top bit is INSIDE the hemisphere.  So I am only interested in the bottom smaller cone.

 

Volume of little cone:

 

=13πr2h=13π2515=13π2515=75π

 

Volume of hemisphere

=1243πr3=46π93=23π93=486π

 

total volume of  solid X = 486π+75π=561πcm3

 

Now the ratio of surface areas of X:Y   =     25:36

so the ratio of lengths of   X:Y              =    5:6

and the ratio of volumes      X:Y           =   125: 216

 

216125=Y561π216125×561π=YY=216125×561πVolumeofY=121176π125cm3

 Feb 16, 2015
 #1
avatar+118703 
+5
Best Answer

This is the cross section of the cone of solid X.    

The top bit is INSIDE the hemisphere.  So I am only interested in the bottom smaller cone.

 

Volume of little cone:

 

=13πr2h=13π2515=13π2515=75π

 

Volume of hemisphere

=1243πr3=46π93=23π93=486π

 

total volume of  solid X = 486π+75π=561πcm3

 

Now the ratio of surface areas of X:Y   =     25:36

so the ratio of lengths of   X:Y              =    5:6

and the ratio of volumes      X:Y           =   125: 216

 

216125=Y561π216125×561π=YY=216125×561πVolumeofY=121176π125cm3

Melody Feb 16, 2015
 #2
avatar
0

the radius of the hemisphere must be 15cm 

so all you have to do is change the R of the equation of what Melody had done from 9 to 15

 Feb 16, 2015

2 Online Users