We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
247
1
avatar+283 

 

Find the smallest positive \(N\) such that
\(N\equiv6(mod 12)\)

\(N\equiv6(mod 18)\)

\(N\equiv6(mod 24)\)

\(N\equiv6(mod 30 )\)

\(N\equiv6(mod 60)\)

 Aug 9, 2018
 #1
avatar+22896 
0

Find the smallest positive  \(N\) such that

\(N\equiv6(mod 12) \\ N\equiv6(mod 18) \\ N\equiv6(mod 24) \\ N\equiv6(mod 30 ) \\ N\equiv6(mod 60) \)

 

\(\begin{array}{|rcll|} \hline & N &\equiv& 6 \pmod {12} \\ & N &\equiv& 6 \pmod {18} \\ & N &\equiv& 6 \pmod {24} \\ & N &\equiv& 6 \pmod {30} \\ & N &\equiv& 6 \pmod {60} \\\\ \Rightarrow & N &\equiv& 6 \pmod{\text{lcm}(12,18,24,30,60)} \\ & N &\equiv& 6 \pmod{360} \\ & \mathbf{N} & \mathbf{=} & \mathbf{6+360m,\ \quad m \in Z} \\ \hline \end{array} \)

 

\(\text{The smallest positive $ N = 6,\ $ if $m = 0$ }\)

 

laugh

 Aug 10, 2018

19 Online Users

avatar