Find the smallest positive \(N\) such that
\(N\equiv6(mod 12)\)
\(N\equiv6(mod 18)\)
\(N\equiv6(mod 24)\)
\(N\equiv6(mod 30 )\)
\(N\equiv6(mod 60)\)
Find the smallest positive \(N\) such that
\(N\equiv6(mod 12) \\ N\equiv6(mod 18) \\ N\equiv6(mod 24) \\ N\equiv6(mod 30 ) \\ N\equiv6(mod 60) \)
\(\begin{array}{|rcll|} \hline & N &\equiv& 6 \pmod {12} \\ & N &\equiv& 6 \pmod {18} \\ & N &\equiv& 6 \pmod {24} \\ & N &\equiv& 6 \pmod {30} \\ & N &\equiv& 6 \pmod {60} \\\\ \Rightarrow & N &\equiv& 6 \pmod{\text{lcm}(12,18,24,30,60)} \\ & N &\equiv& 6 \pmod{360} \\ & \mathbf{N} & \mathbf{=} & \mathbf{6+360m,\ \quad m \in Z} \\ \hline \end{array} \)
\(\text{The smallest positive $ N = 6,\ $ if $m = 0$ }\)