+0  
 
0
67
1
avatar+209 

 

Find the smallest positive \(N\) such that
\(N\equiv6(mod 12)\)

\(N\equiv6(mod 18)\)

\(N\equiv6(mod 24)\)

\(N\equiv6(mod 30 )\)

\(N\equiv6(mod 60)\)

yasbib555  Aug 9, 2018
 #1
avatar+20024 
0

Find the smallest positive  \(N\) such that

\(N\equiv6(mod 12) \\ N\equiv6(mod 18) \\ N\equiv6(mod 24) \\ N\equiv6(mod 30 ) \\ N\equiv6(mod 60) \)

 

\(\begin{array}{|rcll|} \hline & N &\equiv& 6 \pmod {12} \\ & N &\equiv& 6 \pmod {18} \\ & N &\equiv& 6 \pmod {24} \\ & N &\equiv& 6 \pmod {30} \\ & N &\equiv& 6 \pmod {60} \\\\ \Rightarrow & N &\equiv& 6 \pmod{\text{lcm}(12,18,24,30,60)} \\ & N &\equiv& 6 \pmod{360} \\ & \mathbf{N} & \mathbf{=} & \mathbf{6+360m,\ \quad m \in Z} \\ \hline \end{array} \)

 

\(\text{The smallest positive $ N = 6,\ $ if $m = 0$ }\)

 

laugh

heureka  Aug 10, 2018

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.