+0  
 
0
111
1
avatar+428 

An infinite geometric series has first term -3/2 and sums to twice the common ratio. Find the sum of all possible values for the common ratio.

waffles  Sep 20, 2017

Best Answer 

 #1
avatar+18771 
+1

An infinite geometric series has first term -3/2 and sums to twice the common ratio.

Find the sum of all possible values for the common ratio.

 

If the common ratio r lies between −1 to 1 , we can have the sum of an infinite geometric series.

That is, the sum exits for \(| r |<1\) .

The sum S of an infinite geometric series with \( -1 is given by the formula, \(S=\frac{a_1}{1-r}\)

 

Let \(a_1 = -\frac{3}{2}\)

Let \( r =\,?\)

 

\(\begin{array}{|rcll|} \hline S = \frac{a_1}{1-r} &=& 2r \quad & | \quad a_1 = -\frac{3}{2} \\ \frac{-\frac{3}{2}}{1-r} &=& 2r \\ -\frac{3}{2} \cdot \frac{1}{1-r} &=& 2r \quad & | \quad : 2 \\ -\frac{3}{4} \cdot \frac{1}{1-r} &=& r \\ \frac{3}{4} \cdot \frac{1}{r-1} &=& r \quad & | \quad \cdot (r-1) \\ \frac{3}{4} &=& r \cdot (r-1) \quad & | \quad - \frac{3}{4} \\ r \cdot (r-1) - \frac{3}{4} &=& 0 \\ r^2-r- \frac{3}{4} &=& 0 \\\\ r &=& \frac{1\pm\sqrt{1-4\cdot (- \frac{3}{4}) } }{2} \\ r &=& \frac{1\pm\sqrt{1+3 } }{2} \\ r &=& \frac{1\pm 2 }{2} \\\\ r_1 &=& \frac{1 + 2 }{2} \\ r_1 &=& \frac{3}{2} \quad & | \quad \text{ no common ratio, because } r > 1 \\\\ r_2 &=& \frac{1 - 2 }{2} \\ r_2 &=& -\frac{1}{2} \\ \hline \end{array}\)

 

the sum of all possible values for the common ratio is \(-\frac12\)

 

laugh

heureka  Sep 20, 2017
Sort: 

1+0 Answers

 #1
avatar+18771 
+1
Best Answer

An infinite geometric series has first term -3/2 and sums to twice the common ratio.

Find the sum of all possible values for the common ratio.

 

If the common ratio r lies between −1 to 1 , we can have the sum of an infinite geometric series.

That is, the sum exits for \(| r |<1\) .

The sum S of an infinite geometric series with \( -1 is given by the formula, \(S=\frac{a_1}{1-r}\)

 

Let \(a_1 = -\frac{3}{2}\)

Let \( r =\,?\)

 

\(\begin{array}{|rcll|} \hline S = \frac{a_1}{1-r} &=& 2r \quad & | \quad a_1 = -\frac{3}{2} \\ \frac{-\frac{3}{2}}{1-r} &=& 2r \\ -\frac{3}{2} \cdot \frac{1}{1-r} &=& 2r \quad & | \quad : 2 \\ -\frac{3}{4} \cdot \frac{1}{1-r} &=& r \\ \frac{3}{4} \cdot \frac{1}{r-1} &=& r \quad & | \quad \cdot (r-1) \\ \frac{3}{4} &=& r \cdot (r-1) \quad & | \quad - \frac{3}{4} \\ r \cdot (r-1) - \frac{3}{4} &=& 0 \\ r^2-r- \frac{3}{4} &=& 0 \\\\ r &=& \frac{1\pm\sqrt{1-4\cdot (- \frac{3}{4}) } }{2} \\ r &=& \frac{1\pm\sqrt{1+3 } }{2} \\ r &=& \frac{1\pm 2 }{2} \\\\ r_1 &=& \frac{1 + 2 }{2} \\ r_1 &=& \frac{3}{2} \quad & | \quad \text{ no common ratio, because } r > 1 \\\\ r_2 &=& \frac{1 - 2 }{2} \\ r_2 &=& -\frac{1}{2} \\ \hline \end{array}\)

 

the sum of all possible values for the common ratio is \(-\frac12\)

 

laugh

heureka  Sep 20, 2017

5 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details