|z|2−2ˉz+iz=2i.
z*z(bar) - 2(a - bi) + i (a + bi) = 2i
(a + bI) ( a - bi) - 2a + 2bi + ai + bi^2 = 2i
a^2+ b^2 - 2a + 2bi + ai + bi^2 = 2i
a^2 + b^2 - 2a + 2bi + ai - b = 2i
(a^2 + b^2 - 2a - b) + (2b + a)i = 0 + 2i equate coefficients
Thus
a^2 + b^2 - 2a - b = 0 (1)
2b + a = 2 ⇒ a = 2 - 2b ⇒ a = 2 (1 - b) (2)
Sub (2) into (1)
[4 (1 - b)^2] + b^2 - 2 [ 2 (1 - b) ] - b = 0
4 (b^2 - 2b + 1) + b^2 - 4 + 4b - b = 0
4b^2 - 8b + 4 + b^2 - 4 + 4b - b = 0
5b^2 - 5b = 0
b^2 - b = 0
b(b - 1) = 0 set each factor to 0 and solve for b
b = 0 or b = 1
So when b = 0, a = 2 (1 - 0) = 2
And when b = 1, a = 2 ( 1 - 1) = 0
So the solutions are
z = 2 + 0i , z = 0 +1i
Find all complex numbers z such that
|z|2−2ˉz+iz=2i.
|z|^2-2\bar z+iz=2i.
|z|2−2ˉz+iz=2i||z|2=zˉzzˉz−2ˉz+iz=2i|−izzˉz−2ˉz=2i−izˉz(z−2)=i(2−z)ˉz(z−2)=−i(z−2)|z−2≠0ˉz=−i(z−2z−2)ˉz=−i|ˉz=a−bia−bi=0−i|compare both sidesa=0b=1orz=0+1iˉz(z−2)=−i(z−2)|z−2=0z−2=0|+2z=2|z=a+bia+bi=2+0i|compare both sidesa=2b=0orz=2+0i