+0  
 
0
324
2
avatar+606 

Find all complex numbers $z$ such that \[ |z|^2-2\bar z+iz=2i. \]

gueesstt  Apr 16, 2018
 #1
avatar+92533 
+3

\( |z|^2-2\bar z+iz=2i. \)  

 

z*z(bar) - 2(a - bi) + i (a + bi)  =  2i

 

(a + bI) ( a - bi) - 2a + 2bi + ai + bi^2  =  2i

 

a^2+ b^2 - 2a + 2bi + ai + bi^2  = 2i

 

a^2 + b^2 - 2a + 2bi + ai - b  = 2i      

 

(a^2 + b^2 - 2a - b) + (2b + a)i  =   0 +  2i     equate coefficients

 

Thus

 

a^2 + b^2 - 2a - b  =  0   (1)

2b + a  = 2  ⇒  a  = 2 - 2b  ⇒  a = 2 (1 - b)   (2)

 

Sub (2)  into (1)

[4 (1 - b)^2] + b^2 - 2 [ 2 (1 - b) ] - b  = 0

4 (b^2 - 2b + 1) + b^2 - 4 + 4b  - b  = 0

4b^2 - 8b + 4 + b^2 - 4 + 4b - b  = 0

5b^2 - 5b = 0

b^2 - b  = 0

b(b - 1)  = 0      set each factor to 0 and solve for b

 

b  =  0     or  b  = 1

So when b = 0, a  =  2 (1 - 0)  = 2   

And when b  = 1,   a  = 2 ( 1 - 1)  = 0

 

So  the solutions are

z = 2 + 0i ,   z = 0 +1i

 

 

cool cool cool

CPhill  Apr 16, 2018
edited by CPhill  Apr 16, 2018
 #2
avatar+20597 
+2

Find all complex numbers $z$ such that

\(|z|^2-2\bar z+iz=2i.\)

|z|^2-2\bar z+iz=2i.

 

 

\(\begin{array}{|rcll|} \hline |z|^2-2\bar z+iz &=& 2i \quad & | \quad |z|^2=z\bar z \\ z\bar z-2\bar z+iz &=& 2i \quad & | \quad -iz \\ z\bar z-2\bar z &=& 2i -iz \\ \bar z(z-2) &=& i(2 - z) \\ \bar z(z-2) &=& -i(z - 2) \quad & | \quad z-2 \ne 0 \\ \bar z &=& -i\left(\dfrac{z - 2}{z-2}\right) \\ \bar z &=& -i \quad & | \quad \bar z = a-bi \\\\ a-bi &=& 0-i \quad & | \quad \text{compare both sides} \\ && \boxed{a=0\qquad b = 1 \qquad \text{or} \qquad z= 0 + 1i} \\\\ \bar z(z-2) &=& -i(z - 2) \quad & | \quad z-2 = 0 \\ z-2 &=& 0 \quad & | \quad + 2 \\ z &=& 2 \quad & | \quad z = a+bi \\\\ a+bi &=& 2+0i \quad & | \quad \text{compare both sides} \\ && \boxed{a=2\qquad b = 0 \qquad \text{or} \qquad z= 2 + 0i} \\ \hline \end{array}\)

 

laugh

heureka  Apr 16, 2018

35 Online Users

avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.