Loading [MathJax]/jax/output/SVG/fonts/TeX/fontdata.js
 
+0  
 
0
1924
2
avatar+612 

Find all complex numbers z such that |z|22ˉz+iz=2i.

 Apr 16, 2018
 #1
avatar+130466 
+3

|z|22ˉz+iz=2i.  

 

z*z(bar) - 2(a - bi) + i (a + bi)  =  2i

 

(a + bI) ( a - bi) - 2a + 2bi + ai + bi^2  =  2i

 

a^2+ b^2 - 2a + 2bi + ai + bi^2  = 2i

 

a^2 + b^2 - 2a + 2bi + ai - b  = 2i      

 

(a^2 + b^2 - 2a - b) + (2b + a)i  =   0 +  2i     equate coefficients

 

Thus

 

a^2 + b^2 - 2a - b  =  0   (1)

2b + a  = 2  ⇒  a  = 2 - 2b  ⇒  a = 2 (1 - b)   (2)

 

Sub (2)  into (1)

[4 (1 - b)^2] + b^2 - 2 [ 2 (1 - b) ] - b  = 0

4 (b^2 - 2b + 1) + b^2 - 4 + 4b  - b  = 0

4b^2 - 8b + 4 + b^2 - 4 + 4b - b  = 0

5b^2 - 5b = 0

b^2 - b  = 0

b(b - 1)  = 0      set each factor to 0 and solve for b

 

b  =  0     or  b  = 1

So when b = 0, a  =  2 (1 - 0)  = 2   

And when b  = 1,   a  = 2 ( 1 - 1)  = 0

 

So  the solutions are

z = 2 + 0i ,   z = 0 +1i

 

 

cool cool cool

 Apr 16, 2018
edited by CPhill  Apr 16, 2018
 #2
avatar+26396 
+2

Find all complex numbers z such that

|z|22ˉz+iz=2i.

|z|^2-2\bar z+iz=2i.

 

 

|z|22ˉz+iz=2i||z|2=zˉzzˉz2ˉz+iz=2i|izzˉz2ˉz=2iizˉz(z2)=i(2z)ˉz(z2)=i(z2)|z20ˉz=i(z2z2)ˉz=i|ˉz=abiabi=0i|compare both sidesa=0b=1orz=0+1iˉz(z2)=i(z2)|z2=0z2=0|+2z=2|z=a+bia+bi=2+0i|compare both sidesa=2b=0orz=2+0i

 

laugh

 Apr 16, 2018

3 Online Users

avatar