+0  
 
0
805
1
avatar

I don't understand it:

 

If the odds for pulling a prize out of the box are 3:4, what is the probability of not pulling the prize out of the box? Express your answer as a common fraction.

 

Thanks in advance!

 Mar 3, 2019

Best Answer 

 #1
avatar+6251 
+1

\(\text{odds of doing X} = \dfrac{P[\text{doing X}]}{P[\text{Not doing X}]}=\dfrac{P[\text{doing X}]}{1-P[\text{doing X}]}\)

 

\(\text{odds of pulling prize }=\dfrac{3}{4} \Rightarrow P[\text{pulling prize}] = \dfrac{3}{3+4}= \dfrac 3 7\)

 

\(P[\text{not pulling prize}]=1-P[\text{pulling prize}] = \\ 1 - \dfrac 3 7 = \dfrac 4 7\)

.
 Mar 3, 2019
 #1
avatar+6251 
+1
Best Answer

\(\text{odds of doing X} = \dfrac{P[\text{doing X}]}{P[\text{Not doing X}]}=\dfrac{P[\text{doing X}]}{1-P[\text{doing X}]}\)

 

\(\text{odds of pulling prize }=\dfrac{3}{4} \Rightarrow P[\text{pulling prize}] = \dfrac{3}{3+4}= \dfrac 3 7\)

 

\(P[\text{not pulling prize}]=1-P[\text{pulling prize}] = \\ 1 - \dfrac 3 7 = \dfrac 4 7\)

Rom Mar 3, 2019

1 Online Users

avatar