We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
148
1
avatar

Compute \(\sum_{1 \le a < b < c} \frac{1}{2^a 3^b 5^c}\)
(The sum is taken over all triples \((a,b,c)\) of positive integers such that \(1 \le a < b < c.\))

 Dec 9, 2018
 #1
avatar+5233 
+1

\(\sum \limits_{a=1}^\infty~\sum \limits_{b=a+1}^\infty~\sum \limits_{c=b+1}^\infty~\dfrac{1}{2^a3^b5^c} = \\ \sum \limits_{a=1}^\infty~\sum \limits_{b=a+1}^\infty~\dfrac{1}{2^a3^b}\sum \limits_{c=b+1}^\infty~\dfrac{1}{5^c}=\\ \sum \limits_{a=1}^\infty~\sum \limits_{b=a+1}^\infty~\dfrac{1}{2^a3^b}\sum \limits_{c=0}^\infty~\dfrac{1}{5^{c+b+1}}=\\ \sum \limits_{a=1}^\infty~\sum \limits_{b=a+1}^\infty~\dfrac{1}{2^a3^b}\dfrac{1}{5^{b+1}}\dfrac{5}{4} =\)

 

\(\sum \limits_{a=1}^\infty~\sum \limits_{b=a+1}^\infty~\dfrac{1}{2^a3^b}\dfrac{1}{5^{b+1}}\dfrac{5}{4} =\\ \sum \limits_{a=1}^\infty~\dfrac{1}{2^a}~\sum \limits_{b=a+1}^\infty~\dfrac{1}{15^b}\dfrac 1 5\dfrac 5 4=\\ \dfrac 1 4 \sum \limits_{a=1}^\infty~\dfrac{1}{2^a}~\sum \limits_{b=0}^\infty~\dfrac{1}{15^{b+a+1}}=\\ \dfrac 1 4 \sum \limits_{a=1}^\infty~\dfrac{1}{2^a}\dfrac{1}{15^{a+1}}\dfrac{15}{14} = \\ \dfrac 1 4 \sum \limits_{a=1}^\infty~\dfrac{1}{30^a}\dfrac{1}{15}\dfrac{15}{14} = \\ \dfrac{1}{56}\sum \limits_{a=1}^\infty~\dfrac{1}{30^a} =\)

 

\(\dfrac{1}{56}\dfrac{1}{30}\dfrac{30}{29} = \dfrac{1}{56}\dfrac{1}{29} = \dfrac{1}{1624}\)

.
 Dec 9, 2018

11 Online Users