In triangle ABC, AB = 13, BC = 14, and AC = 15. Let M be the midpoint of BC. Find AM.
Thanks!!!
In triangle(ABC), AB = 13, BC = 14, and AC = 15.
M is the midpoint of BC.
Find AM.
I'm going to use the Law of Cosines twice
-- first, with triangle(ABC), to find angle(C)
-- and then, with triangle(ABM), to find AM.
Triangle(ABC): AC2 = AB2 + BC2 - 2·AB·BC·cos(B)
---> 152 = 132 + 142 - 2·13·14·cos(B)
---> 225 = 169 + 196 - 364·cos(B)
---> -140 = -364·cos(B)
---> cos(B) = 0.3846
---> B = 67.38o
Triangle(ABM) AM2 = AB2 + BM2 - 2·AB·BC·cos(B)
---> AM2 = 132 + 72 - 2·13·7·cos(67.38o)
---> AM2 = 148
---> AM = sqrt(148)
Nice Job @geno3141! Can you help with my problem, it is just above this one.Thanks!