A science museum has a spherical model of the earth with a diameter of 6.5 m. What is the volume of the model to the nearest cubic meter?
radius = diameter/2
radius = 6.5/2 = \(\frac{13}{4}\) m
volume \(=\frac43 \, * \, \pi \, *\, (\text{radius})^3 \\~\\ =\frac43 \, * \, \pi \, *\, (\frac{13}{4})^3 \\~\\ =\frac43\,*\,\pi\,*\,\frac{2197}{64} \\~\\ =\frac{2197\pi}{48} \\~\\ \approx 144 \quad \text{cubic meters}\)
radius = diameter/2
radius = 6.5/2 = \(\frac{13}{4}\) m
volume \(=\frac43 \, * \, \pi \, *\, (\text{radius})^3 \\~\\ =\frac43 \, * \, \pi \, *\, (\frac{13}{4})^3 \\~\\ =\frac43\,*\,\pi\,*\,\frac{2197}{64} \\~\\ =\frac{2197\pi}{48} \\~\\ \approx 144 \quad \text{cubic meters}\)