+0  
 
0
417
1
avatar+22 

Suppose z=2021+2022i is a solution of the polynomial equation \({a}_{4}{z}^{4}+i{a}_{3}{z}^{3}+{a}_{2}{z}^{2}+i{a}_{1}{z}+{a}_{0}\)=0, where \(a_4,a_3,a_2,a_1, \) and \(a_0\) are real constants and i=\(\sqrt{-1}\). Which of the following must also be a solution?

 

A ) −2021−2022i

B ) 2021−2022i

C ) −2021+2022i

D ) 2022+2021i

E ) None of these

 May 22, 2021
 #1
avatar+178 
+2

Take the conjugate to get 2021-2022i.

 May 22, 2021

1 Online Users