+0  
 
+1
59
1
avatar+604 

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution? Express your answer as a common fraction.

gueesstt  May 4, 2018

Best Answer 

 #1
avatar+19376 
+3

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution?

Express your answer as a common fraction.

 

\(\begin{array}{|rcll|} \hline (x+4)(x+1) &=& m + 2x \\ x^2+5x+4 &=& m+2x \\ x^2+3x+4-m &=& 0 \\\\ x &=& \dfrac{-3\pm \sqrt{9-4(4-m)} }{2} \\ &=& \dfrac{-3\pm \sqrt{9-16+4m} }{2} \\ &=& \dfrac{-3\pm \sqrt{4m-7} }{2} \\\\ && \text{one real solution: $ \sqrt{4m-7}=0$} \\ \sqrt{4m-7} &=& 0 \\ 4m-7 &=& 0 \\ 4m &=& 7 \\ \mathbf{ m } & \mathbf{=} & \mathbf{ \dfrac{7}{4} } \\ \hline \end{array}\)

 

laugh

heureka  May 4, 2018
Sort: 

1+0 Answers

 #1
avatar+19376 
+3
Best Answer

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution?

Express your answer as a common fraction.

 

\(\begin{array}{|rcll|} \hline (x+4)(x+1) &=& m + 2x \\ x^2+5x+4 &=& m+2x \\ x^2+3x+4-m &=& 0 \\\\ x &=& \dfrac{-3\pm \sqrt{9-4(4-m)} }{2} \\ &=& \dfrac{-3\pm \sqrt{9-16+4m} }{2} \\ &=& \dfrac{-3\pm \sqrt{4m-7} }{2} \\\\ && \text{one real solution: $ \sqrt{4m-7}=0$} \\ \sqrt{4m-7} &=& 0 \\ 4m-7 &=& 0 \\ 4m &=& 7 \\ \mathbf{ m } & \mathbf{=} & \mathbf{ \dfrac{7}{4} } \\ \hline \end{array}\)

 

laugh

heureka  May 4, 2018

9 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy