+0  
 
+1
2321
1
avatar+612 

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution? Express your answer as a common fraction.

 May 4, 2018

Best Answer 

 #1
avatar+26393 
+3

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution?

Express your answer as a common fraction.

 

\(\begin{array}{|rcll|} \hline (x+4)(x+1) &=& m + 2x \\ x^2+5x+4 &=& m+2x \\ x^2+3x+4-m &=& 0 \\\\ x &=& \dfrac{-3\pm \sqrt{9-4(4-m)} }{2} \\ &=& \dfrac{-3\pm \sqrt{9-16+4m} }{2} \\ &=& \dfrac{-3\pm \sqrt{4m-7} }{2} \\\\ && \text{one real solution: $ \sqrt{4m-7}=0$} \\ \sqrt{4m-7} &=& 0 \\ 4m-7 &=& 0 \\ 4m &=& 7 \\ \mathbf{ m } & \mathbf{=} & \mathbf{ \dfrac{7}{4} } \\ \hline \end{array}\)

 

laugh

 May 4, 2018
 #1
avatar+26393 
+3
Best Answer

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution?

Express your answer as a common fraction.

 

\(\begin{array}{|rcll|} \hline (x+4)(x+1) &=& m + 2x \\ x^2+5x+4 &=& m+2x \\ x^2+3x+4-m &=& 0 \\\\ x &=& \dfrac{-3\pm \sqrt{9-4(4-m)} }{2} \\ &=& \dfrac{-3\pm \sqrt{9-16+4m} }{2} \\ &=& \dfrac{-3\pm \sqrt{4m-7} }{2} \\\\ && \text{one real solution: $ \sqrt{4m-7}=0$} \\ \sqrt{4m-7} &=& 0 \\ 4m-7 &=& 0 \\ 4m &=& 7 \\ \mathbf{ m } & \mathbf{=} & \mathbf{ \dfrac{7}{4} } \\ \hline \end{array}\)

 

laugh

heureka May 4, 2018

0 Online Users