+0  
 
+1
192
1
avatar+604 

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution? Express your answer as a common fraction.

gueesstt  May 4, 2018

Best Answer 

 #1
avatar+20013 
+3

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution?

Express your answer as a common fraction.

 

\(\begin{array}{|rcll|} \hline (x+4)(x+1) &=& m + 2x \\ x^2+5x+4 &=& m+2x \\ x^2+3x+4-m &=& 0 \\\\ x &=& \dfrac{-3\pm \sqrt{9-4(4-m)} }{2} \\ &=& \dfrac{-3\pm \sqrt{9-16+4m} }{2} \\ &=& \dfrac{-3\pm \sqrt{4m-7} }{2} \\\\ && \text{one real solution: $ \sqrt{4m-7}=0$} \\ \sqrt{4m-7} &=& 0 \\ 4m-7 &=& 0 \\ 4m &=& 7 \\ \mathbf{ m } & \mathbf{=} & \mathbf{ \dfrac{7}{4} } \\ \hline \end{array}\)

 

laugh

heureka  May 4, 2018
 #1
avatar+20013 
+3
Best Answer

For what value of $m$ does the equation $(x+4)(x+1) = m + 2x$ have exactly one real solution?

Express your answer as a common fraction.

 

\(\begin{array}{|rcll|} \hline (x+4)(x+1) &=& m + 2x \\ x^2+5x+4 &=& m+2x \\ x^2+3x+4-m &=& 0 \\\\ x &=& \dfrac{-3\pm \sqrt{9-4(4-m)} }{2} \\ &=& \dfrac{-3\pm \sqrt{9-16+4m} }{2} \\ &=& \dfrac{-3\pm \sqrt{4m-7} }{2} \\\\ && \text{one real solution: $ \sqrt{4m-7}=0$} \\ \sqrt{4m-7} &=& 0 \\ 4m-7 &=& 0 \\ 4m &=& 7 \\ \mathbf{ m } & \mathbf{=} & \mathbf{ \dfrac{7}{4} } \\ \hline \end{array}\)

 

laugh

heureka  May 4, 2018

33 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.