I have the following terms of an arithmetic sequence: $\frac{1}{2}, x-1, 3x, \ldots$. Solve for $x$.
Isn't the gap between two consecutive numbers, the same? So, \(3x-x-1=\frac{1}{2}, 2x-1=\frac{1}{2}, 2x=\frac{3}{2}, x=\frac{3}{4}\) .
Consecutive terms of an arithemtic sequence have a common difference.
We can write the equaiton:
\((x-1)-\frac12=3x-(x-1) \\ x-1.5=2x+1\\ x=-2.5\)
Then, we can plug this value into the terms to check if they have a common difference.
The sequence goes: \(\frac12, -2.5-1, 3\cdot(-2.5) \Rightarrow0.5, -3.5, -7.5\)
The common difference is 4, so the value works!
I hope this helped,
Gavin.
I have the following terms of an arithmetic sequence:
\(\frac{1}{2}, x-1, 3x, \ldots\)
$\frac{1}{2}, x-1, 3x, \ldots$.
Solve for \(x\).
Formula of an arithmetic sequence:
\(\begin{array}{|rcll|} \hline \begin{vmatrix} a_i & a_j & a_k \\ i & j & k \\ 1 & 1 & 1 & \\ \end{vmatrix} = 0 \\\\ a_i(j-k)+a_j(k-i)+a_k(i-j) &=& 0 \\ \hline \end{array} \)
\(\text{Set $i=1$, $\ j=2$, $\ k=3$ } \\ \text{Set $a_i=a_1=\frac12$, $\ a_j=a_2=x-1$, $\ a_k=a_3=3x$ } \)
\(\begin{array}{|rcll|} \hline a_i(j-k)+a_j(k-i)+a_k(i-j) &=& 0 \\\\ \frac12(2-3)+(x-1)(3-1)+3x(1-2) &=& 0 \\ \frac12(-1)+(x-1)(2)+3x(-1) &=& 0 \\ -\frac12+2x-2-3x &=& 0 \\ -\frac52-x &=& 0 \\ \frac52+x &=& 0 \\ x &=& -\frac52 \\ \mathbf{x} &\mathbf{=}& \mathbf{-2.5} \\ \hline \end{array} \)
We have two equations in two unknowns...call the common difference, d
(1/2) + d = x -1 ⇒ (1/2) + 1 = x - d (1)
x -1 + d = 3x ⇒ -1 = 2x - d ⇒ 1 = -2x + d (2)
Add (1) and (2) and we get
(5/2) = - x
-5/2 = x
And d = (3/2) = (-5/2) - d ⇒ d = -5/2 - 3/2 = -8/2 = -4
Proof
1/2 , -5/2 -1 , 3 (-5/2)
1/2 , -7/2 , -15/2 with d = -4