Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
2680
4
avatar

I have the following terms of an arithmetic sequence: $\frac{1}{2}, x-1, 3x, \ldots$. Solve for $x$.

 Aug 28, 2018
 #1
avatar+4624 
+1

Isn't the gap between two consecutive numbers, the same? So, 3xx1=12,2x1=12,2x=32,x=34

 Aug 28, 2018
 #2
avatar+985 
0

Consecutive terms of an arithemtic sequence have a common difference. 

 

We can write the equaiton:

 

(x1)12=3x(x1)x1.5=2x+1x=2.5

 

Then, we can plug this value into the terms to check if they have a common difference. 

 

The sequence goes: 12,2.51,3(2.5)0.5,3.5,7.5

 

The common difference is 4, so the value works!

 

I hope this helped,

 

Gavin. 

 Aug 28, 2018
 #3
avatar+26396 
+3

I have the following terms of an arithmetic sequence:

12,x1,3x,

$\frac{1}{2}, x-1, 3x, \ldots$.

Solve for x.

 

Formula of an arithmetic sequence:

|aiajakijk111|=0ai(jk)+aj(ki)+ak(ij)=0

 

Set i=1 j=2 k=3 Set ai=a1=12 aj=a2=x1 ak=a3=3x 

 

ai(jk)+aj(ki)+ak(ij)=012(23)+(x1)(31)+3x(12)=012(1)+(x1)(2)+3x(1)=012+2x23x=052x=052+x=0x=52x=2.5

 

laugh

 Aug 28, 2018
edited by heureka  Aug 28, 2018
 #4
avatar+130466 
+2

We have two  equations in two unknowns...call the common  difference, d

 

(1/2) +  d  = x -1  ⇒    (1/2) + 1  = x - d      (1)

x -1 + d  = 3x    ⇒       -1 =    2x  - d    ⇒  1 = -2x + d      (2)

 

Add (1)  and (2)  and we get

 

(5/2)  = - x

 

-5/2  =  x

 

And  d  =  (3/2)  = (-5/2) - d ⇒   d  =  -5/2  - 3/2  = -8/2   = -4

 

Proof

 

1/2 , -5/2  -1 , 3 (-5/2)

 

1/2 , -7/2 , -15/2         with   d  =  -4

 

 

cool cool cool

 Aug 28, 2018

4 Online Users

avatar