+0  
 
0
126
4
avatar

I have the following terms of an arithmetic sequence: $\frac{1}{2}, x-1, 3x, \ldots$. Solve for $x$.

Guest Aug 28, 2018
 #1
avatar+3270 
+1

Isn't the gap between two consecutive numbers, the same? So, \(3x-x-1=\frac{1}{2}, 2x-1=\frac{1}{2}, 2x=\frac{3}{2}, x=\frac{3}{4}\)

tertre  Aug 28, 2018
 #2
avatar+963 
+1

Consecutive terms of an arithemtic sequence have a common difference. 

 

We can write the equaiton:

 

\((x-1)-\frac12=3x-(x-1) \\ x-1.5=2x+1\\ x=-2.5\)

 

Then, we can plug this value into the terms to check if they have a common difference. 

 

The sequence goes: \(\frac12, -2.5-1, 3\cdot(-2.5) \Rightarrow0.5, -3.5, -7.5\)

 

The common difference is 4, so the value works!

 

I hope this helped,

 

Gavin. 

GYanggg  Aug 28, 2018
 #3
avatar+20147 
+1

I have the following terms of an arithmetic sequence:

\(\frac{1}{2}, x-1, 3x, \ldots\)

$\frac{1}{2}, x-1, 3x, \ldots$.

Solve for \(x\).

 

Formula of an arithmetic sequence:

\(\begin{array}{|rcll|} \hline \begin{vmatrix} a_i & a_j & a_k \\ i & j & k \\ 1 & 1 & 1 & \\ \end{vmatrix} = 0 \\\\ a_i(j-k)+a_j(k-i)+a_k(i-j) &=& 0 \\ \hline \end{array} \)

 

\(\text{Set $i=1$, $\ j=2$, $\ k=3$ } \\ \text{Set $a_i=a_1=\frac12$, $\ a_j=a_2=x-1$, $\ a_k=a_3=3x$ } \)

 

\(\begin{array}{|rcll|} \hline a_i(j-k)+a_j(k-i)+a_k(i-j) &=& 0 \\\\ \frac12(2-3)+(x-1)(3-1)+3x(1-2) &=& 0 \\ \frac12(-1)+(x-1)(2)+3x(-1) &=& 0 \\ -\frac12+2x-2-3x &=& 0 \\ -\frac52-x &=& 0 \\ \frac52+x &=& 0 \\ x &=& -\frac52 \\ \mathbf{x} &\mathbf{=}& \mathbf{-2.5} \\ \hline \end{array} \)

 

laugh

heureka  Aug 28, 2018
edited by heureka  Aug 28, 2018
 #4
avatar+91027 
+1

We have two  equations in two unknowns...call the common  difference, d

 

(1/2) +  d  = x -1  ⇒    (1/2) + 1  = x - d      (1)

x -1 + d  = 3x    ⇒       -1 =    2x  - d    ⇒  1 = -2x + d      (2)

 

Add (1)  and (2)  and we get

 

(5/2)  = - x

 

-5/2  =  x

 

And  d  =  (3/2)  = (-5/2) - d ⇒   d  =  -5/2  - 3/2  = -8/2   = -4

 

Proof

 

1/2 , -5/2  -1 , 3 (-5/2)

 

1/2 , -7/2 , -15/2         with   d  =  -4

 

 

cool cool cool

CPhill  Aug 28, 2018

28 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.