+0  
 
0
242
1
avatar

If sinA = cosA was is the angle measurement?

Guest May 7, 2017
 #1
avatar+19488 
+1

If sin(A)=cos(A) was is the angle measurement?

 

\(\small{ \begin{array}{rcl|rcl|rcl} \sin(A)&=&\cos(A) \\ \cos(A)-\sin(A) &=& 0 & \sin(45^{\circ}-A) &=& \sin(45^{\circ})\cdot\cos(A)- \cos(45^{\circ})\cdot\sin(A) & \sin(45^{\circ})=\cos(45^{\circ}) = \frac{\sqrt{2}}{2} \\ & & & \sin(45^{\circ}-A) &=& \frac{\sqrt{2}}{2}\cdot\cos(A)- \frac{\sqrt{2}}{2}\cdot\sin(A) \\ & & & \sin(45^{\circ}-A) &=& \frac{\sqrt{2}}{2}\Big(\cdot\cos(A)- \sin(A) \Big) \\ \frac{2}{\sqrt{2}}\cdot \sin(45^{\circ}-A)&=& 0 & \frac{2}{\sqrt{2}}\cdot \sin(45^{\circ}-A) &=& \cos(A)- \sin(A) \\ \sin(45^{\circ}-A)&=& 0 \\ 45^{\circ}-A &=& \arcsin(0) \\ 45^{\circ}-A &=& 0\pm n\cdot 360^{\circ} \qquad n \in \mathbb{N} \\ \mathbf{A} & \mathbf{=} & \mathbf{45^{\circ} \pm n\cdot 360^{\circ}} \\\\ \sin(45^{\circ}-A)=\sin(180^{\circ}-(45^{\circ}-A) ) &=& 0 \\ 180^{\circ}-(45^{\circ}-A) &=& \arcsin(0) \\ 180^{\circ}-45^{\circ}+A &=& \arcsin(0) \\ 135^{\circ} + A &=& 0\pm n\cdot 360^{\circ} \qquad n \in \mathbb{N} \\\\ A &=& -135^{\circ} \pm n\cdot 360^{\circ} \\ A &=& -135^{\circ} + 360^{\circ} \pm n\cdot 360^{\circ} \\ \mathbf{A} & \mathbf{=} & \mathbf{225^{\circ} \pm n\cdot 360^{\circ}} \\ \end{array} } \)

 

laugh

heureka  May 8, 2017

13 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.