+0  
 
-1
1250
1
avatar+101 

Let P(x) be a nonconstant polynomial, where all the coefficients are nonnegative integers. Prove that there exist infinitely many positive integers n such that P(n) is composite.

 

 

 

Thanks for your time!

 Dec 21, 2019
 #1
avatar
-1

We know that P(a) - P(b) is divisible by a - b.  This means if a - b is not a prime number, then P(a) - P(b) is not a prime number.  So by modular arithmetic, we can find a positive integer n such that P(n) is composite.

 

If P(a_1) and P(a_2) are composite, then P(a_1) - P(a_2) will be divisible by some prime number.  Similarly, if P(a_1) - P(a_2) is divisible by some prime number, and P(a_1) or P(a_2) is composite, then the other one is also composite.

 

We can then take a_1 = n.  So there exists a positive integer a_2 such that P(a_2) is composite.  But since P(a_2) is composite, we can apply the result above, to find a positive integer a_3 such that P(a_3) is composite.  In this way, we can generate an infinite number of positive integers n such that P(n) is composite.

 Feb 13, 2020

0 Online Users