+0  
 
0
59
1
avatar

Let z be a complex number such that |z - 5 - i| = 5. Find the minimum value of \(|z - 1 + 2i|^2 + |z - 9 - 4i|^2\).

 

Let z be a complex number such that z^5 = 1 and \(z \neq 1\). Compute \(z + \frac{1}{z} + z^2 + \frac{1}{z^2}.\)

 Apr 18, 2019
 #1
avatar
0

For the first problem, the minimum value is 32.

 

For the second problem, the answer is 5.

 Nov 29, 2019

36 Online Users

avatar