We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
166
1
avatar+80 

For what values of j does the equation (2x+7)(x-5) = -43 + jx have exactly one real solution? Express your answer as a list of numbers, separated by commas.

 Dec 25, 2018
 #1
avatar+101870 
+1

(2x+7)(x-5) = -43 + jx     simplify

 

2x^2 - 3x - 35  = -43 +   jx

 

2x^2 -   3x - jx + 8 =  0

 

2x^2 - (3 + j)x + 8 = 0

 

If we have only one real root.....the dicriminant must = 0.....so

 

(3 + j)^2 - 4(2)(8)  = 0

 

(j + 3)^2 - 64  =  0       factor as a difference of squares

 

[ (j + 3) - 8 ]   [ (j + 3) + 8 ]  = 0

 

[ j - 5 ]  [ j + 11]  =  0

 

Setting both factors to 0  and solving for j  produces 

 

j = 5    or     j  = -11

 

So...    -11, 5

 

 

cool cool cool

 Dec 25, 2018

7 Online Users