+0  
 
+5
622
3
avatar

e^{g\left(x\right)}=\frac{x^x}{x^2-1} than what is g(x)

 Jul 16, 2016

Best Answer 

 #3
avatar+33653 
+15

Here's a picture to illustrate Melody's answer:

 

g(x)

.

 Jul 16, 2016
 #1
avatar+9665 
+5

\(e^{g\left(x\right)}=\frac{x^x}{x^2-1}\)

\(g(x)= \ln(\frac{x^x}{x^2-1})\\ \quad \;\;\;=x\ln x-(\ln(x+1)(x-1))\\ \quad \;\;\;=x \ln x - \ln (x+1)- \ln (x-1)\\ \text{Sorry if I am wrong I am pretty bad at logarithms}\)

.
 Jul 16, 2016
 #2
avatar+118659 
+10

 

HI MAX   smiley

 

Your answer looks good except if we are dealing with the real number system there are restrictions on the domain.

 

\(e^{g\left(x\right)}=\frac{x^x}{x^2-1}\\ \mbox{e to the power of any real number is positive so the RHS must be positive}\\ g(x)= \ln(\frac{x^x}{x^2-1})\\ \)

 

 

1)     \(x^2-1\ne0\;\;\;\;so\\ x\ne\pm1\)

 

2)   xx does crazy things isf x is not not greater than zero. (x certainly cannot equal 0) So I am going to say that x must be greater than 0.

      I think that this is correct but I would like another mathematician to comment

      \(x>0 \qquad x\ne1\)

 

3)  

 

       \(\frac{x^x}{x^2-1}>0\\ \mbox{Since the numerator is positive the denominator must be positive too}\\ x^2>1\\ x>1 \;\;x<-1\\ so\;\;x>1\)

 

 

 

 

\(g(x)= \ln(\frac{x^x}{x^2-1})\\ \quad \;\;\;=x\ln x-(\ln(x+1)(x-1))\\ \quad \;\;\;=x \ln x - \ln (x+1)- \ln (x-1)\\ \)

Your answer is correct so long as you state that the domain is  \(x>1 \;\;for \;\;x\in R\)

 Jul 16, 2016
 #3
avatar+33653 
+15
Best Answer

Here's a picture to illustrate Melody's answer:

 

g(x)

.

Alan Jul 16, 2016

2 Online Users

avatar
avatar