We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+2
312
1
avatar+61 

In parallelogram ABCD point K belongs to diagonal BD so that BK:DK=1:4. If the extension of AK meets BC at point E, what is the ratio of BE:EC?

 Dec 25, 2018
 #1
avatar+103131 
+3

Let ABCD be the parallelogram

 

Angle BKE = Angle AKD   (vertical angles)

Since AB is parallel to CD  and BD is a transversal cuting these parallels, then

Angle KBE = Angle ADK

 

Then ΔAKD  is similar to ΔEKB

 

And  

 

BK / DK  =  BE / AD

 

But since we have a paralleogram, AD = BC

 

So

 

BK / DK =  BE / BC

 

But  BK /DK  =  1/4

 

So

 

BE / BC   =  1/4

 

So

 

BC / BE  =  4/1

 

[ BE + EC ]  / BE =   4

 

BE / BE  +  EC / BE  = 4

 

1 + EC / BE  =  4

 

EC / BE =  3

 

EC / BE = 3/1

 

So

 

BE / CE   =   1 / 3

 

 

cool cool cool

 Dec 26, 2018

3 Online Users