Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
678
1
avatar

The solution of 8x+15(mod12) is xa(modm) for some positive integers m2 and a<2. Find a+m.

 

Hi ya'll, I got 17, because 5 can be a solution for x (actual solution is 3n+2 for some random integer n).

 

If you plug that in, you get

41 ≡ 5 (mod 12), which works because 41 (mod 12) = 5.

That means a=5 and m=12.

122 and 5<12.

5+12=17, so why is this wrong?  (I checked and it said it was wrong crying)

 Dec 19, 2018
 #1
avatar+6252 
+2

8x+15(mod12)8x4(mod12)8x=12k+4, kZ2x=3k+1, kZ2x1(mod3)now the tricky part21(mod3)=2x2(mod3)the problem states a<2, this is an error, it should be a2

.
 Dec 19, 2018

2 Online Users

avatar